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L Introduction

LWave equation and time harmonic equation

Wave equation can be written as

1 1 0?P(r,t)
\Y (pV (r, t)) =T 0, (1)
where P(r, t) is pressure, p is the density and c is the speed of

sound.

If pressure P(r,t) is time-harmonic, i.e. P(r,t) = p(r)exp(—iwt)
where the angular frequency w = 2xf and t is the time, the
time-harmonic (Helmholtz) equation is of the form

1 2
V-<V>p+“p:o (2)
P P

where p is acoustic pressure and k = w/c + i3 (complex) is a wavey,

number. ﬁ it A
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L Introduction

- Solving process

Problem set: We have the partial differential equation(s) with
boundary conditions that we want to solve.

Solution: The numerical modeling process is shown in Figure 1.

The numerical method that we are using is called the ultra weak
variational formulation.

Computational domain Discretization (mesh)
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Figure: Solving process. First we have a computational domain. Second
we discretize the computational domain (e.g. tri

Y
problem using the UWVF.
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L Introduction
L Helmholtz equation

Equations behind the solutions

Let us consider again the Helmholtz equation (2). Let Q be a bounded domain
in R? with the boundary I and n the outward normal unit vector. The
homogeneous time-harmonic Helmholtz problem is

2

v-(lv)er’ip:omQ (3)
P P
1op ;N _of_19% _;
<p8n 10p>—Q( > on lap>+gonr 4

where p is a pressure, K = < # 0 is a wave number, Q € C with |Q| < 1 gives
boundary conditions, o € R is a coupling parameter (o = R{x}/p) and g is the
source term.

Boundary conditions:

Q@ = 1: Neumann b.c.

Q = —1: Dirichlet b.c.

Q # 1, —1: mixed, Robin b.c. N \ﬁ
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L Introduction
LScattering
:

Sound-hard, rigid, scatterer

Let us assume that the computational domain Q consists of two domains
s.t. Q = Q; UQy, the interface between Q; and Q5 is 9Q; and

p1€1 >> paco (characteristic impedance). The total fiel is p = p; + ps
where p; is incident field and ps is scattered field. In addition,

V2p;i + k3p; = 0 in Q,.

Nz
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LScattering

Sound-hard, rigid, scatterer

Let us assume that the computational domain Q consists of two domains
s.t. Q = Q1 UQy, the interface between Q; and Q5 is 9Q; and

p1€1 >> pacy (characteristic impedance). The total fiel is p = p; + ps
where p; is incident field and ps is scattered field. In addition,

V2p; + k3p; = 0 in Q5. We need to find ps s.t.

V2ps + k3ps =0 in Qs (5)
1 aps 1 api
— =—— o0 6
p2 On p2 On Haa (6)
0
: (d-1)/2 ( 9Ps . _
Rlinoo R (8R I/i2p$> 0 (7)

where d is the dimension of the problem and R is the distance.
N7
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LScattering

Sound-hard, rigid, scatterer

Let us assume that the computational domain Q consists of two domains
s.t. Q = Q1 UQy, the interface between Q; and Q5 is 9Q; and

p1€1 >> pacy (characteristic impedance). The total fiel is p = p; + ps
where p; is incident field and ps is scattered field. In addition,

V2p; + k3p; = 0 in Q5. We need to find ps s.t.

V2ps + k3ps =0 in Qs (5)
1 aps 1 api
— =—— o0 6
p2 On p2 On Haa (6)
. ops .
(d—1)/2 s _
Rlinoo R (8R //<;2ps> 0 (7)

where d is the dimension of the problem and R is the distance. Equation
(7) is Sommerfeld radiation condition i.e. scattered field propagates away\;
from the volume V4 and vanishes when R — ooﬁ Yreas
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LScattering

Sound-soft, pressure release, scatterer

Let us assume that the computational domain Q consists of two domains
s.t. Q = Q; UQy, the interface between Q; and Q5 is 9Q; and

p161 << pacy (characteristic impedance). The total fiel is p = p; + ps
where p; is incident field and ps is scattered field. In addition,

V2p;i + k3p; =0 in Qs.

Nz
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LScattering

Sound-soft, pressure release, scatterer

Let us assume that the computational domain Q consists of two domains
s.t. Q = Q; UQ,, the interface between Q7 and Q5 is 9Q; and

p161 << pacp (characteristic impedance). The total fiel is p = p; + ps
where p; is incident field and ps is scattered field. In addition,

V2p; + k3p; = 0 in Q5. We need to find ps s.t.

V2ps + k3ps =0 in Qy (8)
ps = —pi on 9 (9)
. _ op .
(d-1)/2 ( ZFs _ —
RlinC>O R (8:‘? //<;2ps) 0 (10)

where d is the dimension of the problem and R is the distance. Equation
(10) is Sommerfeld radiation condition. g

Finnish Centre of Excellence ’
in Research _ UNIVERSITY OF
EASTERN FINLAND




Computational modeling of time-harmonic wave propagation
L Introduction
LScattering

Local acoustic absorbing boundary condition

Local acoustic absorbing boundary condition (ABC), zeroth order
absorbing boundary condition, is of the form

@ —ikp =0 on exterior boundary I (11)

on
that is obtained from Sommerfeld radiation condition.
Zeroth order ABC may suffer from poor accuracy in some problems.

N7
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LScattering

Perfectly mathced layer

Perfectly matched layer (PML) was introduced by Bérenger for
electromagnetic problems and it has been applied also in acoustics.
The PML for inhomogeneous Helmholtz equation can be derived
using complex streching variables, i.e.

X + éf;o aox(|x] —x0)"dx |x| > xo
X x| < xo

y :{ v+ )0 ooy (lyl = yo)dy Iyl = yo

y lyl <o

g [zt iR o0slzl —20)"dz |z = 2
z |z| < zo -
p

where ¢ x, 00,,, 00, are constants and n is %gelﬁm " usssvor
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LScattering

In addition, we can write

ox’' 1+LUOX(|X| —Xo)" ’X| > X0
= — = K ” -
h(x) = 55 { 1 x| < xo

d,(y) == 8_)// _ 1+ éao’)/(b/‘ =y)" |yl =y
) 1 ly[ <o

9z

Straightforward derivation leads

d(z) = 0z [ 1+ éao’z(|z] —20)" |z| > 2
‘ 1 |z] < zg

1 2,2

LY/

: dyd,
Where 772 g dxdydz and A - dlag(%, %m fﬁiﬂﬁﬁi?};iﬁf“”e"‘f ’
x ly 1 kessarch  UNIVERSITY OF
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LScattering

Performance of the UWVF in acoustics

Re(ps),f=20000 Hz

z(m)

SRRASE

v

S
4

A

2
VAVAVa
ol

i
A%

FavaTa

ST

£
o
o

y (mm)

Figure: Modeling of head-related transfer function (HRTF). Left: Total
pressure at 20 kHz. Right: Scattered pressure at 20 kHz. Reference: Huttunen,

Seppald, Karkkidinen, Karkkdinen: Simulation of the transfer function for a
head-and-torso model over the entire audible frequ

ency range, Journal of \;
Computational Acoustics, Volume: 15, Issue: 4(200“9—%&”*C‘""*"““”e"“
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LScal:tering

Anisotropic Helmholtz problem using PML

Exact, esl
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Figure: Anisotropic Helmholtz problem with UWVF using PML (error =
2.2318%).
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LScattering

Anisotropic Helmholtz problem using ABC

Exact, esl
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Figure: Anisotropic Helmholtz problem with UWVF using zeroth order
ABC (error = 7.9381%).
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LScattering

Scattering from a circle

UWVF real Exact physical, real

Figure: Scattering from a circle (sound-hard scatterer). Ny
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- Note

» Results shown earlier were computed using the ultra weak
variational formulation (UWVF). However, at first we shall
look at the finite element method that is widely used in
modeling problems. Properties of FEM will be discussed
shortly.

» Note: The UWVF and FEM are different methods even though
they both use finite elements (e.g. triangles, tetrahedra)

» Next we shall show the weak formulation of Helmholtz problem

Y

[
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L Finite Element Method
L Weak formulation

Weak form in FEM

Weak formulation: We multiply Helmholtz equation (3) by a test
function v € H(Q) (Sobolev space) and integrate over the
computational domain Q. Hence

[ ()ese o

g
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L Finite Element Method
L Weak formulation

Weak form in FEM

Weak formulation: We multiply Helmholtz equation (3) by a test
function v € H(Q) (Sobolev space) and integrate over the
computational domain €. Hence

1 2
/ [V-(—V)p-l—ﬁ—p]v:o (13)
Q P P
Integration by parts gives
1 10
—/ ~Vp-Vv+ “9P, K—pv: (14)
Qp rp P

N7

Finnish Centre of Excellence ’
I in Inverse Problems Research _ UNIVERSITY OF
: EASTERN FINLAND



Computational modeling of time-harmonic wave propagation
L Finite Element Method
L Weak formulation

The boundary condition (4) can be written as
lap 1-Q.
pon 1+ Q@

iop + (15)

1+ Q%

X
N

Y
i Finnish Centre of Excellence A
I in Inverse Problems Research _ UNIVERSITY OF
¢ EASTERN FINLAND



Computational modeling of time-harmonic wave propagation
L Finite Element Method
L Weak formulation

The boundary condition (4) can be written as
10p_1-Q
pon  1+Q 1+ Qg'

Plugging equation (15) into the equation (14) and rearranging
terms we obtain

1 K2 1-Q 1
— -Vp-Vv+ v+/ iav:—/v
/QP P ap’ r1+ Q7P r1+ Q8
(16)

iop + (15)

The bilinear form is

1 K2 1-Q
v)=—[ =Vp-V — ' 17
alp-v) /Qp P V+/Qppv+/rl+0mpv (17)

and the RHS is
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L Finite Element Method
L Weak formulation

Variational problem

We want to find p € H1(Q) s.t.

a(p,v) = F(v) (19)

forall v € Hl(Q).

LY,
i Finnish Centre of Excellence \
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L Finite Element Method
LProperties of FEM

About the FEM

» Widely used for solving physical problems (which include
partial differential equations)

» Handles complex geometries and inhomogeneous media
» Discretization using piecewise polynomial basis functions

» Accuracy obtained by increasing the polynomial order and/or
number of elements

» Low-order FEM needs 10 grid points per wavelength and at
higher wave numbers even more discretization points are
needed due to the “numerical pollution” error
= Computational burden increases more and more when wave
number grows N

p

search  UNIVERSITY OF
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L Finite Element Method
LProperties of FEM

About the FEM continues

» Low-order FEM needs 10 grid points per wavelength and at
higher wave numbers even more discretization points are
needed due to the “numerical pollution” error
= Computational burden increases more and more when wave
number grows

» For low-order FEM the error estimate is of the form
error = Cyrh + Cor3h? (20)

where « is the wave number, h is the element size and Gy, G
are constants.

» Non-polynomial methods have been found to be competitive RS

to standard FEMs ﬁ X ’
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LNon-polynomial methods

LList of methods which use non-polynomial basis functions

Non-polynomial basis methods

» The partition of unity finite element method (PUFEM) by
Babuska and Melenk (1997).

» Least squares method (LSM) by Monk and Wang (1999).

» Discontinuous enrichment method (DEM) by Farhat et al.
(2001).

» Discontinuous Galerkin method (DGM) by Farhat et al.
(2003), Gittelson, Hiptmair and Perugia (2007).

» Discontinuous Petrov-Galerkin method (DPGM) by
Demkowicz et al. (2009)

» Non-polynomial FEM by Barnett and Betcke (2009)
» The ultra-weak variational formulation (UWVF) by Després %

(1994), Cessenat and Després (1998). ﬁ e
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LNon-polynomial methods
L Properties of the UWVF

The UWVF

v

Special form of the DGM, Huttunen, Malinen and Monk
(2006), Gabard (2007)

Competitive method to FEM

v

Volume based method and uses FE meshes

v

v

Basis discontinuous over elements, physical basis functions e.g.
plane waves
» plane wave basis = integrals can be computed efficiently in
closed form
» allows to define different number of basis functions for
different wave components
» number of basis functions can vary from element to element

» Matrices resulting in the UWVF are sparse \;

Finni ellence
I i inin Research  UNIVERSITY OF
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LNon—ponnomiaI methods
LProperties of the UWVF

What affects accuracy in the UWVF?

v

The number of basis functions per element (too many basis
functions per element may produce an ill-conditioned system)

v

The ratio between basis function components in elasticity
(P-,SH- and SV-waves)

Mesh size

v

v

The choice of numerical flux between elements (next two
slides)

Y
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I—Non—polynomial methods
LProperties of the UWVF

Uniform mesh

p=3, k=0.05 and h=1.0 p=3, k=0.05 and h=1.0
10°
—— PW basis —— PW basis
—o— Bessel basis —o—Bessel basis
0.045
10°
0.04
g
< oo3s 5w
g g
& 003 S
2 X
] 10
T 0025 £
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10’
0,015,
0.01 10°

15 20 15 20

10 10
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Figure: Results for K = 0.05 when p =3, h = 1.0 and a coupling
parameter is o = (k + ¢/h). Parameter c varies. Y-
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I—Non—polynomial methods
LProperties of the UWVF

Uniform mesh

Y10 p=5, k=0.05 and h=1.0 p=5, k=0.05 and h=1.0

—— PW basis 107
—o— Bessel basis

max(Dcond)

Relative error (%)

15 20 15 20

10 10
Parameter ¢ Parameter ¢

Figure: Results for k = 0.05 when p =5, h = 1.0 and a coupling
parameter is o = (x + c/h). Parameter c varies. Ng
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LThe UWVF of Helmholtz equation
L Derivation

Notations

The ultra weak variational formulation for the Helmholtz problem
(3)-(4) is derived next.

Part of the mesh. Exterior boundary of an element €, is denoted
by ', and outward unit normal by ny. The interface between
elements € and €; is denoted as ), ..

[k

s

h  UNIVERSITYOF
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I—The UWVF of Helmholtz equation
L Derivation

Let py satisfy the Helmholtz equation
Apk+ Kipr =0 in Q. (21)

We assume that smooth test function v satisfy the adjoint
Helmholtz equation, i.e.

AVi + K2V =0 in Q. (22)

g
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LThe UWVF of Helmholtz equation
L Derivation

We can write the following equation

— | ——— — 10pk ——— — IOV
Pk Nk

for all smooth test functions v.

Finnish Centre of Excellence
I; inlnverse Problems Research  UNIVERSITY OF
: EASTERN FINLAND
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LThe UWVF of Helmholtz equation
L Derivation

Using Green's identity we can write

opk _ vy ) / _ _
— Vv, — AR — A Vi — AV 24
/mk <8nk k= Prg, o, (ApiVi — pkAVk) (24)

On the other hand, from equations (21) and (22) we know that
Apy = —mipk and Avyg = —nivk.
Therefore

/Q (ApiVi — pkAVy) = /Q (—K%PKVK + PkERVK) =0 (25)
k k

LY/
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LThe UWVF of Helmholtz equation
L Derivation

Hence, we obtain

Z — | ———— — 10pk ——— —— — 10V
00, 0\ Pk Nk Pk Nk
N

k=1

1/1 1
- Z/ = <—% - iapk) (—% . iavk) (26)
— Joo, 7 \ Pk Nk Pk Nk

Notice that on the interior interfaces the following conditions must
hold, also coupling forms (transmission conditions),

pk=pj ony (27)
k.j

Opk _ Op;
an, ~ on; on » . (28)\;

[ in Inverse Problems Research _ UNIVERSITY OF
: EASTERN FINLAND
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LThe UWVF of Helmholtz equation
L Derivation

Defining a new function

. k=1,...,N. (29)

Substituting the boundary condition (4) and sufficient coupling forms
(transmission conditions) of (27)-(28) to the (26) and using new function (29)

we obtain
N 1 1 dv, T
S iw(-L 5 - iou)aa- ZZ/ x( 2% g )an
k1’0 Pk On k=1 j—1 P Oy
N - -
_Z/ Q.X (iﬂ_,gvk)dA:Z/ lg<i%—iovk>d/\,
) o Pk On “~ Jr, o7\ px Ony

for all v, satisfying the adjoint Helmholtz equation (22).
Y
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LThe UWVF of Helmholtz equation
L Derivation

To simplify notations we denote

1 8Vk
Fi (Y 2(———/v) on 0N 30
(Vi) e dng 7V p (30)
and
Vi = (—i% - IO’Vk) on 0 (31)
Pk Ong

Then the UWVF can be written as

Z/ —Xkyde ZZ/ —X Fi(Vi)dA (32)

=1 =1 72k ©

—Z Xkayde
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LThe UWVF of Helmholtz equation
L Derivation

Discretization

We choose finite family of functions ¢y 4, £ =1,..., Ny for each
Qy that satisfy the adjoint Helmholtz equation (22). Hence

1 0 .
yk—zyk€< kit ’U<Pk,€> k=1,....,.N  (34)

P Ong
Similarly
Ny
1 Opky >
XZ = Xy | ———= — k=1,...,N 35
=3 (=t — i (3)
and

1 Opre .
Zm(ﬂ it i) k=L N o0

e
Using now (34)-(36) in equation (33) we obtain the discrete UWVF
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LThe UWVF of Helmholtz equation
L Derivation

In matrix form
(D-C)X=b= (

Matrix D is a Hermitian block diagonal i.e. D = diag(Dy, ..

Let us write the form of the entries

plm _ 1 1 90km . _
k 00 —_\ —10Pkm _a 8"/( —10®k,m
K

D 'C)X=D""b. (37)
., D).

Pk Ony

The matrix C entries are
1 /10y _ 1 Opke .

C&m :/ — LML — i ~ — 39

k.j 10Qj.m or Ony icpke | (39)

, 1 Opke .
—iopkm |\ D pp T TPk
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|—The UWVF of Helmholtz equation
|—Deriva':ion

The RHS vector b can be constructed from

1 10 .
bf :/ -g Pht —10Qgk g (41)
Ik

p®\ pi Oni

.
7
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Computational modeling of time-harmonic wave propagation

L Choice of the basis function

L Plane wave basis

Plane wave (PW) basis

_J exp(iRkdk - xi) in Q
Pk = 0, elsewhere

in which the direction dy , = (cos (2%%) ,sin <27r£,\_,—:>)

LY/
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L Choice of the basis function

L Plane wave basis

Pros and cons of PW basis

v

The UWVF integrals can be computed in a closed form

v

= Efficient to compute.

v

[ll-conditioning may occur when elements are small or at low
frequencies.

v

May have challenges with sharp corners

g
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L Choice of the basis function
L Bessel basis

Bessel basis with scaling is of the form

J, X, —X

Z('Zk| kh Okl) 1[0 in Qk
Sok,f = o (Richi)

0, elsewhere

where hy is the edge of an element, xq , is the "basis origin” and ¢
is an angle. Bessel basis without scaling is

— Je(Rrlxp — x4 ])e™ in Qe
PhEZ) 0, elsewhere

the order of Bessel function £ in an element Qy is
Pe—1 _

2
Y

JE— ShC leofE(\e( ’
where s =1,..., p. m i § G

{=5s—
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L Choice of the basis function
L Bessel basis

Pros and cons of Bessel basis

» The UWVF integrals must be computed using quadratures
» Slower to compute than PW basis

» Condition number is smaller for the scaled Bessel basis than it
is using PW basis at low frequencies or when element sizes are
small

» Help singularities

N7
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L Numerical results (Helmbholtz)
LPlropagating plane wave
We seek the solution to
the problem

Au+rk’u=0inQ

0
%jtiau:a—i%—iagonl'

where g = exp(ird - x)

and d = (cos(m/p), sin(7/p))

for plane wave propagation

and g = exp(i(a1(x + 1) + azy))

where a% + oz% = K2,

o] = fﬁ\/ﬁ and as = Bk

with 3 > 1 for evanescent wave.

h=0.03125

Finnish Centre of Excellence ’
in Inverse Problems Research _ UNIVERSITY OF
EASTERN FINLAND.
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Computational modeling of time-harmonic wave propagation

L Numerical results (Helmholtz)
LPropagating plane wave

Uniform mesh Plane wave propagation (exact) Evanescent wave (exact)
(h=0.25) when k=0.05 when k=0.05

1 -1 1 -1
05 —05 095 g5 08
0.6

o o 0.9 o
0.85 04

-0.5 0.5 0.5
0.8 0.2

1 1

. . -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Figure: One of the meshes on the LHS. The exact solution for the plane
wave propagation problem (center) is uex = exp(ikd - x) and for the
evanescent wave problem (RHS) uex = exp(i(a1(x + 1) + aay)) where
a2+ a3 =kK2 a1 = iky/f2 — 1 and ap = Bk with 3 > 1. N
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L Numerical results (Helmholtz)
LPropagating plane wave

Plane wave propagation and

Plane wave propagation Evanescent wave evanescent wave
when k=0.05 and p=5 when k=0.05 and p=5 when k=0.05 and p=5
10° 10°
== PW basis =—e—PW basis
S 4| | =*= Bessel basis < ' =e= Bessel basis
o B e e o
5 | 5w 2
£ (= S
o 0] A8 107
Q10 ) 52
E E 107 3
3 6 > € 10°
o . \'( x W basis .
10 L’ 10° o ' Bessel basis
107 10" 10° 107 10™ 10° 107 10" 10°
h h h

Figure: Relative error (%) vs. the mesh size h for plane wave propagation
(LHS) and evanescent wave (center) and the condition number of matrix
D vs. mesh size (RHS).
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Computational modeling of time-harmonic wave propagation
L Numerical results (Helmholtz)
LSingular 2D Helmbholtz problem

Approximate u that satisfies

Au+r2u=0inQ

u=0onT;
19} ) 0 . B
a—;—k/au:a—i—i—mgonrg VYV

where
L2
g(r,0) = J%(mr) sm(§9).

The exact solution
to the L-shaped domain problem
is Uex = g. This solution has 7

a singular derivative at the origin. m PR A
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Computational modeling of time-harmonic wave propagation
L Numerical results (Helmbholtz)
LSingular 2D Helmbholtz problem

In simulations we use regular plane wave basis and Bessel basis. We
can use modified Bessel basis in which we take into account the
exact solution. The modified Bessel basis is of the form

S (Rl — xo.1)€™ in Qp and if £ = —2/3
ke =19 Jo(Frlxx — xo,])e" in Q) and if £ # —2/3

0, elsewhere

the order of Bessel function ¢ in an element Q is

s—P"2_3—1, when s =1,...,px —2
{= %,Whens:pk—l

—%, when s = py

Y
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Computational modeling of time-harmonic wave propagation
L Numerical results (Helmholtz)
LSingular 2D Helmbholtz problem

PW-Bessel-UWVF in an L-shaped domain (uniform).

We use modified Bessel basis in elements which lie near the singular
point (in 5 elements) and elsewhere we use regular plane wave
basis.

Table: Results using PW+Bessel basis functions in an uniform mesh.

Basis K P error(%) max(Dcond) CPU Time [s]
0.05 5 1.0827 1.3196e6 20.7810
PW-Bessel 0.5 5 0.2498 1.3132e4 20.7004
5 7 0.1194 4.7782e3 35.4461
50 25 0.0246 2.6588e7 747.6763
Basis K P error(%) max(Dcond) CPU Time [s]
0.05 5 1.5173 1.3196e6 7.7368
PW 0.5 5 1.0571 1.3132e4 7.6037
5 7 1.8760 4.7782e3 10.6958
50 25 2.8962 3.3511e5 73.4306

N7
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Computational modeling of time-harmonic wave propagation
L Numerical results (Helmholtz)
LSingular 2D Helmbholtz problem

PW-Bessel-UWVF in an L-shaped domain (non-uniform).

Choosing the number of basis functions in a non-uniform mesh can
be obtained from

px = round(rkhk + C(/fkhk)l/3)

where h is the edge of the element, C is a constant (C =5 in our
simulations below) and if py is even we set py = px — 1.

Nz
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Computational modeling of time-harmonic wave propagation

L Numerical results (Helmholtz)

LSingular 2D Helmbholtz problem

PW-Bessel-UWVF in an L-shaped domain (non-uniform).

Table: Results using PW+Bessel basis functions for the non-uniform

mesh.
Basis K P error(%) max(Dcond) CPU Time [s]
0.05 3 2.3529 65.0767 25.3846
PW-Bessel 0.5 3 0.4960 14.3588 25.4662
5 3.7 1.8532 2.3514e4 33.2713
50 7..27 0.0454 1.2786e8 210.9513
Basis K P error(%) max(Dcond) CPU Time [s]
0.05 3 0.4999 11.2229 14.9222
PW 0.5 3 0.4791 11.1942 17.3626
5 3.7 2.6257 2.3514e4 21.7997
50 7..27 2.1779 1.2786e8 161.4971
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Computational modeling of time-harmonic wave propagation
LThe UWVF for the Navier problem

Figure: Fluid medium.
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Computational modeling of time-harmonic wave propagation
LThe UWVF for the Navier problem

Figure: Fluid brain.
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Computational modeling of time-harmonic wave propagation
LThe UWVF for the Navier problem

Figure: Example of modeling focused ultrasound of brain.
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Computational modeling of time-harmonic wave propagation
LThe UWVF for the Navier problem

Navier equation

Let Q be a computational domain with the boundary I' = 09 and
let Q consists of non-overlapping elements, i.e. Q = UQ’Zlﬂk where
N is the number of elements. For each Q the Navier equation is

pAu+ (A4 @)V(V-u) +w?pu=0 in Q, (42)

where w is the angular frequency of the field, u is the
time-harmonic displacement vector, A and p are the Lamé
constants and p is the density of the medium.

Y
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Computational modeling of time-harmonic wave propagation
LThe UWVF for the Navier problem

Lamé constants and wave speeds

The Lamé constants can be expressed as

E Ev
HESa—yy AT ATna—) (43)

where E is the Young's modulus and v is the Poisson ratio. The
wave speeds for the P-wave and S-wave are,

cp = )\+2u, CS:\/E' (44)
' » p

LY/
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Computational modeling of time-harmonic wave propagation
L Derivation of the UWVF

Traction operator

Traction operator T(™(u) maps local displacements to local
tractions on any closed surface S and it is defined as

T (u) = 2;;% +AnV - u+pn x V x u. (45)

where n is an outward unit normal to the surface S.

LY/
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Computational modeling of time-harmonic wave propagation
L Derivation of the UWVF

Traction operator

Traction operator T(™(u) maps local displacements to local
tractions on any closed surface S and it is defined as

T(")(u):2u%+)\nv-u+un X V x u. (45)

where n is an outward unit normal to the surface S. In addition,
the complex conjugate of the traction operator T is

TM)(u) = 2“2: +AnV . -u+7anxVxu (46)

and T(" (u) TO) (). 5
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Computational modeling of time-harmonic wave propagation
L Derivation of the UWVF

Faces and exterior boundary

Let Q4 and Q; be neighboring elements and share a common face.
The interface between Q and € is denoted by >, ;. Therefore on
2k, the following conditions hold

U|Qk = u’Qj (47)
T (ulg,) = — T (ulg,) (48)

where nlg, is an outward normal to Q, and similarly n|g; to Q;
(note that n|g, = —nlg,).

Y
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Computational modeling of time-harmonic wave propagation
L Derivation of the UWVF

Faces and exterior boundary

Let Q4 and Q; be neighboring elements and share a common face.
The interface between € and €; is denoted by }, ;. Therefore on
>, the following conditions hold

ulo, = ulg, (47)
T (ulg,) = ~ T (ulg)) (48)

where n|g, is an outward normal to Q4 and similarly n[g; to €;
(note that n|g, = —n|g;). On the exterior boundary I' we have

T W) —iou=Q(-TM(u) —iou)+g onT  (49)

where g is the source term, Q specifies the boundary condltlons \;
and o is a coupling parameter (flux paramet

Resenrcn  UNIVERSITY OF
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Computational modeling of time-harmonic wave propagation
L Derivation of the UWVF

Isometry Lemma

It can be shown that

2 /m o (=TO() — oy ) - (~TM(ey) — ioey.)
_Z/aﬂ e T(nk)(uk) IO’Uk> ( ﬂk)(ek)—/gek) (50)

where uy is the solution of the Navier equation (42) and ey is the
test function that satisfies the adjoint Navier's equation.

LY/
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Computational modeling of time-harmonic wave propagation
L Derivation of the UWVF

The UWVF

Using the “Isometry Lemma"” and boundary conditions we obtain
the UWVF as

Z/ a_le~(—T("k)(ek)—iaek)—ZZ/ o1 (T (ey) — igey)
K 7O kK J ki

- Xk: /r ?aflxk-(ﬂ"k)(ek) —ioey) = ; /ri*g(T("k)(ek) —ice)  (51)

where X = T(")(u,) — iouy on 9.

LY/
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Computational modeling of time-harmonic wave propagation
L Derivation of the UWVF

Discretization

The solution of the adjoint Navier equation is separated into three
components (Helmholtz decomposition): P-wave, SH-wave and
SV-wave. Therefore

e =exp+ersy+ersy (52)

which satisfy V x ep =0 and V-esy = V- egy = 0.

LY/
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Computational modeling of time-harmonic wave propagation
L Derivation of the UWVF

Similarly, the approximation for X is

Pk

X = Z [Xlzl (—T("")(ef,g) - "Uef,e)]
£ [ (T el — o)

+ Z [xf‘é (—T("k)(ei\z) — iaef}é)] .

where
ep _ Ak eXp(Iﬁpak’g . X) in Qy
€= 0 elsewhere

1 — .
efH _ { ak,e exp(ms;.,ak,g . X) mn Qk
;=

’ 0 elsewhere
1 . . .
sv _ [ aje X akcexp(iRsvak-x) in Qg LY/
ek,Z - O Qish Centre of Excellence ’

] i inverse Problems Research _ UNIVERSITY OF
d EASTERN FINLAND
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Computational modeling of time-harmonic wave propagation
L Derivation of the UWVF

Discrete UNWVF

Find Xk € Vo, k=1,2,..., N such that

S [ o y,,k_ZZ/E o s Fenn)
k k

k.j
— Z/ Qo " Xh i - F(Vni) = Z/ o 'g Fi(Vnk)
k Tk k 7Tk

for all Yhix € Vi, k=1,2,..., N where

oh

FuVni) = > [yEe (T (ef0) — ioeft)]

=1

k
Ps
#3 [RY (TeED — el
\f

+ [ T("k) SV) m e lgofs<we<(53N)
E % ensirvor
€ASTERN EINLAND




Computational modeling of time-harmonic wave propagation
L Derivation of the UWVF

Matrices
The discrete UWVF can be written in a matrix form as

(D-CO)X=b = (I-DC)X=D1b (54)

Matrices D and C are sparse block matrices. Matrix D is a block
diagonal and Hermitian.

Matrix D Matrix C
0
500
1000
1500
LY/
0 500 1000 1500 0 500 1000 1500 g,

ntre of Exc
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Computational modeling of time-harmonic wave propagation

L Derivation of the UWVF

Matrices

A sparse block diagonal matrix is D = diag(D*, D?,...,D*,..., D). One

block D* can be written as

k
Dp.po.m
k
Dp sti¢,m
k
Dp sv t,m

D* =

where, for example,

k
Dp sH.e,m =

I GG
o9,

K K
DkSH,P,e,m Dksv,P,e,m
Dsh,st,e,m  Dsv,sh.e,m (55)
D§ D§
sH,sv,em  Dsvsv.em
iaef’m> . (—T(“k)(ef'}) - iaef’}). (56)
N

p
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Computational modeling of time-harmonic wave propagation
L Derivation of the UWVF

Matrices

Sparse matrix C consists of blocks Ck and C*J. Matrix blocks C¥ are on the
diagonal and C*7 are on the off-diagonal of matrix C. Matrix block C* can be
written as follows

k k k
. Cp.p.em Csh.p,t,m Csv.,p.e;m
"= CI‘;(’,SH,Z,m CSH SH.t,m Csv SH.,t,m (57)

Cp.sv,e;m CSH SV,0m Csv SV,6m

where, for example, Cg,SH,Z,m is of the form

k
Cp,sH,e,m =

/ Qo (=T (ef ) — ioef ) - (TCW(e5H) — icef't),  (58)
Tk

similarly others. Y
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Computational modeling of time-harmonic wave propagation
L Derivation of the UWVF

Matrices

The off-diagonal block matrix C* is as follows

k.j k.j k.j
y P.P.0,m CSH P.,m Csv P.,m
Jo_ J J J
= C/:,sH,e,m CSH SH,t,m Csv SH,t,m (59)
J
CP,sv,e,m CSH SV.,t,m Csv SV,6,m

k.j .
where, for example, Cg%,, , ,, is of the form

k.j _
C P,SH.¢,m —

[ o (i o) - (W tt), @0
k.

others can be derived in a similar manner.
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Computational modeling of time-harmonic wave propagation

L Numerical results (Navier)

Plane wave propagation in a unit cube

The exact solution is of the form

u = Aidexp(ikpx - d) + Axdsy exp(irsx - d)
+ Asdsy exp(iﬁsx . d)

where the wave numbers are kp = w/cp, ks = w/cs, the direction
d~[-0.73 045 0.51], dsy =d*, dsy =d* x d and the
amplitudes A; = A = A3 = 1. In addition, V X up = 0 and
V -usy = V -usy = 0. As a boundary condition we choose Q@ = 0.
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Computational modeling of time-harmonic wave propagation

L Numerical results (Navier)

Flux parameter

In numerical simulations we use an ad hoc choice for coupling
parameter (flux parameter) that is

o =wpR{cp}! (61)

where [ is the unit matrix.
More investigations of the optimal flux parameter will be
investigated in (near) future.
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Computational modeling of time-harmonic wave propagation

L Numerical results (Navier)

Mesh 1

Figure: The mesh. The maximum centroid-vertex distance (element
diameter) for element h = 0.4979. Number of tetrahedra 24, faces 60 %

and vertices 14. ﬁ f oo
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Computational modeling of time-harmonic wave propagation
L Numerical results (Navier)

Results for p-convergence

Kp = 4.0551 and Kg = 8.0503

0 10"[[—p,=0.25p
—-Pp=(1/3)pg
—-p,=05pg
10}~ Pp=(213)pg
——Pp=Pg
£10° a
5 210°
b5 2
g 2
E X
B g8 .
s 10
&5t
10*
50 C 150 50 100 150
Number of basis functions Number of basis functions

Figure: Results when rkp = 4.0551, ksy = ksy = 8.0503 with different
ratios between pp/ps and mesh size is fixed. m itz (a

in Inverse Problems Research _ UNIVERSITY OF
EASTERN FINLAND.



Computational modeling of time-harmonic wave propagation

L Numerical results (Navier)

Coarsest and densest mesh

-05 -05

Figure: The coarsest hy.x = 0.7395 and densest meshes h,. = 0.12609. RS
]
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Computational modeling of time-harmonic wave propagation

L Numerical results (Navier)

Results for h-convergence

Kp = 4.0551 and KS=8.050 Kp = 4.0551 and KS=8.050
10° 10°
—oP,=8,pg=21, 0=wpc | ——Pp=8, pg=21, a=wpcl
——P,=10, pg=20, a=wpc| 104 ——Pp=10, pg=20, 0=wpc,|
—e-P,=12, pg=19, o=wpc, | —-Pp=12, pg=19, a=wpc |
10!
10’
g A
o
<] g10
E o 51
@ 10 <
H S
E % 10
© £
4
o
10
107"
10°
-2 2|
10 0*03 1 05 1 0.2 10 10*08 1 -0.5 02
mesh size h mesh size h

Figure: Results when xkp = 4.0551, ksy = ksy = 8.0503 with different N
ratios between pp/ps. Number of basis functiormm%:gmmwm .
Piot = PP + 2 Ps. F1 ] ninenemcblemstescacn  wiversrvon,



Computational modeling of time-harmonic wave propagation

L Numerical results (Navier)

Mesh

-05 -05

Figure: The mesh when hp,., = 0.4978. \;
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Computational modeling of time-harmonic wave propagation

L Numerical results (Navier)

Table: Results when pp = 25 and ps = 50, mesh is fixed and wave
number varies.

Kp Ks error (%) | max(cond(D¥))
4.0551 | 8.0503 0.0321 5.8143e8
5.0689 | 10.0629 | 0.1319 4.5035e7
6.0826 | 12.0755 | 0.4232 5.4503e6
7.0964 | 14.0881 | 1.1347 9.2297e5
8.1102 | 16.1007 | 1.6142 2.0051e5
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Computational modeling of time-harmonic wave propagation
L-DGM and UWVF

FEM, DGM and UWVF
» FEM:

» uses finite elements such as triangles or tetrahedra
» uses polynomial test and trial functions (piecewise polynomial)
» polynomial degree same over the domain
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Computational modeling of time-harmonic wave propagation
L-DGM and UWVF

FEM, DGM and UWVF
» FEM:

» uses finite elements such as triangles or tetrahedra
» uses polynomial test and trial functions (piecewise polynomial)
» polynomial degree same over the domain

» standard DGM:

uses finite elements such as triangles or tetrahedra
uses polynomial test and trial functions (discontinuous)
polynomial degrees may vary from element to element
allows discontinuities over elements

vV vy vVvYy
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Computational modeling of time-harmonic wave propagation
L-DGM and UWVF

FEM, DGM and UWVF
» FEM:

» uses finite elements such as triangles or tetrahedra
» uses polynomial test and trial functions (piecewise polynomial)
» polynomial degree same over the domain

» standard DGM:

uses finite elements such as triangles or tetrahedra
uses polynomial test and trial functions (discontinuous)
polynomial degrees may vary from element to element
allows discontinuities over elements

vV vy vy

» UWVF:

uses finite elements such as triangles or tetrahedra
uses plane wave test and trial functions (discontinuous) Ny
number of basis functions may vary frﬁ.enﬁfg@element (o

werse Problems Research UNIVERSITY OF
allows discontinuities over elements
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Computational modeling of time-harmonic wave propagation
L-DGM and UWVF

Starting from wave equation

1 1 82P(r,t)
v (ZvPr ) - —Z—2" —y, (62)
P pc? ot2
and defining new vectors
oP
gl Ptp
0.
P= Pi = gg’g
Pa i o8
p Ox3
then we can write the following equations
1 0P P2
G N v Ps =0,
c2p Ot Pa
o [ P2
Py | —v.Pi=o0.
ot Pa

References: T. Lahivaara, M. Malinen, J. P. Kaipio, and T. Huttunen, Computational Aspects of the
Discontinuous Galerkin Method for the Wave Equation, Journal of Computational Acoustics, Vol. 16,

No. 4 (2008) 507-530.

T. L3hivaara and T. Huttunen, A non-uniform basis order for the discontinuous Galerkin method of the N/
3D dissipative wave equation with perfectly matched layer Journal o ional Ph}ff[‘fs P
229(13):5144-5160, 2010 ﬁ P uNVERSITYOF
P. Monk and G. R. Richter: A Discontinuous Galerkin Method for Linea etric Hyperbolic Systéms "
in Inhomogeneous Media, Journal of Scientific Computing, Volumes 22 and 23, June 2005, 443- 477
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Computational modeling of time-harmonic wave propagation

L_DGM and UWVF

In a matrix form

op 2. oP

A—+S A — =0 63
S Z 4 ox; (€3)
j=1 ]

where A = diag(?zj';, p, P, p) and
0o -1 0 o0 0o 0 -1 o0 0o 0 0 -1
-1 0 0 O o 0o o0 o 0 0 0 o
A= 0 0o 0 o Az = -1 0 o0 o0 As = 0o o0 o o
0 0 0 o o 0 o0 o -1 0 0 O

References: T. Lihivaara, M. Malinen, J. P. Kaipio, and T. Huttunen, Computational Aspects of the
Discontinuous Galerkin Method for the Wave Equation, Journal of Computational Acoustics, Vol. 16,
No. 4 (2008) 507-530.

T. L3hivaara and T. Huttunen, A non-uniform basis order for the discontinuous Galerkin method of the
3D dissipative wave equation with perfectly matched layer Journal of Computational Physics,
229(13):5144-5160, 2010

P. Monk and G. R. Richter: A Discontinuous Galerkin Method for Linear Symmetric Hyperbolic Systems
in Inhomogeneous Media, Journal of Scientific Computing, Volumes 22 and 23, June 2005, 443- 477
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Computational modeling of time-harmonic wave propagation
L-DGM and UWVF

Weak form in DGM is

3
P oP
vi[A— 4+ A — (64)
/S:Zk ot 1:21 J8Xj
3 T
:/ VTAai—Za" AJ-P+/ vIFP=0 (65)
Q ot = 0x; r(Q)

-1 1

+_ 1 m _ 11 m
Fr= 51 m (=1, m,n2,n3), F~ = S| m (1, n1, n2, n3)

n3 n3

References: T. Lahivaara, M. Malinen, J. P. Kaipio, and T. Huttunen, Computational Aspects of the
Discontinuous Galerkin Method for the Wave Equation, Journal of Computational Acoustics, Vol. 16,

No. 4 (2008) 507-530.

T. L3hivaara and T. Huttunen, A non-uniform basis order for the discontinuous Galerkin method of the

3D dissipative wave equation with perfectly matched layer Journal of Computational Physics, g
229(13):5144-5160, 2010

P. Monk and G. R. Richter: A Discontinuous Galerkin Method for L
in Inhomogeneous Media, Journal of Scientific Computing, Volumes
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Computational modeling of time-harmonic wave propagation
L-DGM and UWVF

Finally we can write

3
(.P oP / S

v | A=+ E Ai— | + v F(P-P 66
/Qk at = Jaxj r,-(Qk) ( ) ( )

_/remk) vT(.F—N)P+/ Vg (67)

re(Qk)

where we have used the knowledge that P = F~P and (F — N)P =g.
References: T. Lihivaara, M. Malinen, J. P. Kaipio, and T. Huttunen, Computational Aspects of the
Discontinuous Galerkin Method for the Wave Equation, Journal of Computational Acoustics, Vol. 16,
No. 4 (2008) 507U530.

T. L3hivaara and T. Huttunen, A non-uniform basis order for the discontinuous Galerkin method of the
3D dissipative wave equation with perfectly matched layer Journal of Computational Physics,
229(13):5144-5160, 2010

P. Monk and G. R. Richter: A Discontinuous Galerkin Method for Linear Symmetric Hyperbolic Systems
in Inhomogeneous Media, Journal of Scientific Computing, Volumes 22 and 23, June 2005, 443- 477
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Computational modeling of time-harmonic wave propagation
L-DGM and UWVF

Summary of the UWVF and DGM

» Above wave equation based weak formulation can be modified
into the time-harmonic equation

» The UWVF is an upwind discontinuous Galerkin method

» Differences between the UWVF and standard DGM are the
form of the fluxes, basis functions and degrees of freedom

» Fluxes and averages over the elements play important role in
the derivation of variational formulations

» Discontinuities allowed in the basis functions

s
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