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Introduction

Wave equation and time harmonic equation

Wave equation can be written as

∇ ·

(

1

ρ
∇P(r , t)

)

−
1

ρc2

∂2P(r , t)

∂t2
= 0, (1)

where P(r , t) is pressure, ρ is the density and c is the speed of
sound.
If pressure P(r , t) is time-harmonic, i.e. P(r , t) = p(r) exp(−iωt)
where the angular frequency ω = 2πf and t is the time, the
time-harmonic (Helmholtz) equation is of the form

∇ ·

(

1

ρ
∇

)

p +
κ2

ρ
p = 0 (2)

where p is acoustic pressure and κ = ω/c + iβ (complex) is a wave
number.
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Solving process

Problem set: We have the partial differential equation(s) with
boundary conditions that we want to solve.
Solution: The numerical modeling process is shown in Figure 1.
The numerical method that we are using is called the ultra weak
variational formulation.
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Figure: Solving process. First we have a computational domain. Second
we discretize the computational domain (e.g. triangles). Third we solve
problem using the UWVF.
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Helmholtz equation

Equations behind the solutions

Let us consider again the Helmholtz equation (2). Let Ω be a bounded domain
in R

2 with the boundary Γ and n the outward normal unit vector. The
homogeneous time-harmonic Helmholtz problem is

∇ ·

(

1

ρ
∇

)

p +
κ2

ρ
p = 0 in Ω (3)

(

1

ρ

∂p

∂n
− iσp

)

= Q

(

−
1

ρ

∂p

∂n
− iσp

)

+ g on Γ (4)

where p is a pressure, κ = ω
c
6= 0 is a wave number, Q ∈ C with |Q| ≤ 1 gives

boundary conditions, σ ∈ R is a coupling parameter (σ = ℜ{κ}/ρ) and g is the
source term.
Boundary conditions:
Q = 1: Neumann b.c.
Q = −1: Dirichlet b.c.

Q 6= 1,−1: mixed, Robin b.c.
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Scattering

Sound-hard, rigid, scatterer

Let us assume that the computational domain Ω consists of two domains
s.t. Ω = Ω1 ∪ Ω2, the interface between Ω1 and Ω2 is ∂Ω1 and
ρ1c1 >> ρ2c2 (characteristic impedance). The total fiel is p = pi + ps

where pi is incident field and ps is scattered field. In addition,
∇2pi + κ2

2
pi = 0 in Ω2.
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Introduction

Scattering

Sound-hard, rigid, scatterer

Let us assume that the computational domain Ω consists of two domains
s.t. Ω = Ω1 ∪ Ω2, the interface between Ω1 and Ω2 is ∂Ω1 and
ρ1c1 >> ρ2c2 (characteristic impedance). The total fiel is p = pi + ps

where pi is incident field and ps is scattered field. In addition,
∇2pi + κ2

2
pi = 0 in Ω2. We need to find ps s.t.

∇2ps + κ2

2
ps = 0 in Ω2 (5)

1

ρ2

∂ps

∂n

= −
1

ρ2

∂pi

∂n

on ∂Ω1 (6)

lim
R→∞

R(d−1)/2

(

∂ps

∂R
− iκ2ps

)

= 0 (7)

where d is the dimension of the problem and R is the distance.
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Scattering

Sound-hard, rigid, scatterer

Let us assume that the computational domain Ω consists of two domains
s.t. Ω = Ω1 ∪ Ω2, the interface between Ω1 and Ω2 is ∂Ω1 and
ρ1c1 >> ρ2c2 (characteristic impedance). The total fiel is p = pi + ps

where pi is incident field and ps is scattered field. In addition,
∇2pi + κ2

2
pi = 0 in Ω2. We need to find ps s.t.

∇2ps + κ2

2
ps = 0 in Ω2 (5)

1

ρ2

∂ps

∂n

= −
1

ρ2

∂pi

∂n

on ∂Ω1 (6)

lim
R→∞

R(d−1)/2

(

∂ps

∂R
− iκ2ps

)

= 0 (7)

where d is the dimension of the problem and R is the distance. Equation

(7) is Sommerfeld radiation condition i.e. scattered field propagates away

from the volume V1 and vanishes when R → ∞.



Computational modeling of time-harmonic wave propagation

Introduction

Scattering

Sound-soft, pressure release, scatterer

Let us assume that the computational domain Ω consists of two domains
s.t. Ω = Ω1 ∪ Ω2, the interface between Ω1 and Ω2 is ∂Ω1 and
ρ1c1 << ρ2c2 (characteristic impedance). The total fiel is p = pi + ps

where pi is incident field and ps is scattered field. In addition,
∇2pi + κ2

2
pi = 0 in Ω2.
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Scattering

Sound-soft, pressure release, scatterer

Let us assume that the computational domain Ω consists of two domains
s.t. Ω = Ω1 ∪ Ω2, the interface between Ω1 and Ω2 is ∂Ω1 and
ρ1c1 << ρ2c2 (characteristic impedance). The total fiel is p = pi + ps

where pi is incident field and ps is scattered field. In addition,
∇2pi + κ2

2
pi = 0 in Ω2. We need to find ps s.t.

∇2ps + κ2

2
ps = 0 in Ω2 (8)

ps = −pi on ∂Ω1 (9)

lim
R→∞

R(d−1)/2

(

∂ps

∂R
− iκ2ps

)

= 0 (10)

where d is the dimension of the problem and R is the distance. Equation

(10) is Sommerfeld radiation condition.
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Scattering

Local acoustic absorbing boundary condition

Local acoustic absorbing boundary condition (ABC), zeroth order
absorbing boundary condition, is of the form

∂p

∂n

− iκp = 0 on exterior boundary Γ (11)

that is obtained from Sommerfeld radiation condition.
Zeroth order ABC may suffer from poor accuracy in some problems.
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Scattering

Perfectly mathced layer

Perfectly matched layer (PML) was introduced by Bérenger for
electromagnetic problems and it has been applied also in acoustics.
The PML for inhomogeneous Helmholtz equation can be derived
using complex streching variables, i.e.

x ′ =

{

x + i
κ

∫ x0
x

σ0,x(|x | − x0)
ndx |x | ≥ x0

x |x | < x0

y ′ =

{

y + i
κ

∫ y0
y

σ0,y (|y | − y0)
ndy |y | ≥ y0

y |y | < y0

z ′ =

{

z + i
κ

∫ z0
z

σ0,z(|z | − z0)
ndz |z | ≥ z0

z |z | < z0

where σ0,x , σ0,y , σ0,z are constants and n is the integer.
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Scattering

In addition, we can write

dx(x) :=
∂x ′

∂x
=

{

1 + i
κσ0,x(|x | − x0)

n |x | ≥ x0

1 |x | < x0

dy (y) :=
∂y ′

∂y
=

{

1 + i
κσ0,y (|y | − y0)

n |y | ≥ y0

1 |y | < y0

dz(z) :=
∂z ′

∂z
=

{

1 + i
κσ0,z(|z | − z0)

n |z | ≥ z0

1 |z | < z0

Straightforward derivation leads

∇ ·

(

1

ρ
A∇

)

p +
κ2η2

ρ
p = fsη

2 (12)

where η2 = dxdydz and A = diag(
dydz

dx
, dxdz

dy
,

dxdy

dz
)
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Scattering

Performance of the UWVF in acoustics

−0.2
−0.1

0
0.1 −0.1

0
0.1

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

y (m)
x (m)

z 
(m

)

y (mm)

x 
(m

m
)

 Re ( p ) , f = 20000 Hz

−100 0 100

−200

−100

0

100

200 −2

−1

0

1

2

y (mm)

x 
(m

m
)

 Re ( p
s
 ) , f = 20000 Hz

−100 0 100

−200

−100

0

100

200 −2

−1

0

1

2

Figure: Modeling of head-related transfer function (HRTF). Left: Total
pressure at 20 kHz. Right: Scattered pressure at 20 kHz. Reference: Huttunen,
Seppälä, Kärkkäinen, Kärkkäinen: Simulation of the transfer function for a
head-and-torso model over the entire audible frequency range, Journal of
Computational Acoustics, Volume: 15, Issue: 4(2007) pp. 429-448.
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Scattering

Anisotropic Helmholtz problem using PML
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Figure: Anisotropic Helmholtz problem with UWVF using PML (error =
2.2318%).
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Scattering

Anisotropic Helmholtz problem using ABC
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Scattering

Scattering from a circle
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Note

◮ Results shown earlier were computed using the ultra weak
variational formulation (UWVF). However, at first we shall
look at the finite element method that is widely used in
modeling problems. Properties of FEM will be discussed
shortly.

◮ Note: The UWVF and FEM are different methods even though
they both use finite elements (e.g. triangles, tetrahedra)

◮ Next we shall show the weak formulation of Helmholtz problem
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Finite Element Method

Weak formulation

Weak form in FEM

Weak formulation: We multiply Helmholtz equation (3) by a test
function v ∈ H1(Ω) (Sobolev space) and integrate over the
computational domain Ω. Hence

∫

Ω

[

∇ ·

(

1

ρ
∇

)

p +
κ2

ρ
p

]

v = 0 (13)



Computational modeling of time-harmonic wave propagation

Finite Element Method

Weak formulation

Weak form in FEM

Weak formulation: We multiply Helmholtz equation (3) by a test
function v ∈ H1(Ω) (Sobolev space) and integrate over the
computational domain Ω. Hence

∫

Ω

[

∇ ·

(

1

ρ
∇

)

p +
κ2

ρ
p

]

v = 0 (13)

Integration by parts gives

−

∫

Ω

1

ρ
∇p · ∇v +

∫

Γ

1

ρ

∂p

∂n

v +

∫

Ω

κ2

ρ
pv = 0 (14)
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Finite Element Method

Weak formulation

The boundary condition (4) can be written as

1

ρ

∂p

∂n

=
1 − Q

1 + Q
iσp +

1

1 + Q
g . (15)
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Finite Element Method

Weak formulation

The boundary condition (4) can be written as

1

ρ

∂p

∂n

=
1 − Q

1 + Q
iσp +

1

1 + Q
g . (15)

Plugging equation (15) into the equation (14) and rearranging
terms we obtain

−

∫

Ω

1

ρ
∇p · ∇v +

∫

Ω

κ2

ρ
pv +

∫

Γ

1 − Q

1 + Q
iσpv = −

∫

Γ

1

1 + Q
gv

(16)

The bilinear form is

a(p, v) = −

∫

Ω

1

ρ
∇p · ∇v +

∫

Ω

κ2

ρ
pv +

∫

Γ

1 − Q

1 + Q
iσpv (17)

and the RHS is

F (v) = −

∫

Γ

1

1 + Q
gv . (18)
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Finite Element Method

Weak formulation

Variational problem

We want to find p ∈ H1(Ω) s.t.

a(p, v) = F (v) (19)

for all v ∈ H1(Ω).
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Finite Element Method

Properties of FEM

About the FEM

◮ Widely used for solving physical problems (which include
partial differential equations)

◮ Handles complex geometries and inhomogeneous media

◮ Discretization using piecewise polynomial basis functions

◮ Accuracy obtained by increasing the polynomial order and/or
number of elements

◮ Low-order FEM needs 10 grid points per wavelength and at
higher wave numbers even more discretization points are
needed due to the “numerical pollution” error
⇒ Computational burden increases more and more when wave
number grows
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Finite Element Method

Properties of FEM

About the FEM continues

◮ Low-order FEM needs 10 grid points per wavelength and at
higher wave numbers even more discretization points are
needed due to the “numerical pollution” error
⇒ Computational burden increases more and more when wave
number grows

◮ For low-order FEM the error estimate is of the form

error = C1κh + C2κ
3h2 (20)

where κ is the wave number, h is the element size and C1,C2

are constants.

◮ Non-polynomial methods have been found to be competitive
to standard FEMs
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Non-polynomial methods

List of methods which use non-polynomial basis functions

Non-polynomial basis methods

◮ The partition of unity finite element method (PUFEM) by
Babuška and Melenk (1997).

◮ Least squares method (LSM) by Monk and Wang (1999).

◮ Discontinuous enrichment method (DEM) by Farhat et al.
(2001).

◮ Discontinuous Galerkin method (DGM) by Farhat et al.
(2003), Gittelson, Hiptmair and Perugia (2007).

◮ Discontinuous Petrov-Galerkin method (DPGM) by
Demkowicz et al. (2009)

◮ Non-polynomial FEM by Barnett and Betcke (2009)

◮ The ultra-weak variational formulation (UWVF) by Després
(1994), Cessenat and Després (1998).
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Non-polynomial methods

Properties of the UWVF

The UWVF

◮ Special form of the DGM, Huttunen, Malinen and Monk
(2006), Gabard (2007)

◮ Competitive method to FEM

◮ Volume based method and uses FE meshes

◮ Basis discontinuous over elements, physical basis functions e.g.
plane waves

◮ plane wave basis ⇒ integrals can be computed efficiently in
closed form

◮ allows to define different number of basis functions for
different wave components

◮ number of basis functions can vary from element to element

◮ Matrices resulting in the UWVF are sparse



Computational modeling of time-harmonic wave propagation

Non-polynomial methods

Properties of the UWVF

What affects accuracy in the UWVF?

◮ The number of basis functions per element (too many basis
functions per element may produce an ill-conditioned system)

◮ The ratio between basis function components in elasticity
(P-,SH- and SV-waves)

◮ Mesh size

◮ The choice of numerical flux between elements (next two
slides)
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Non-polynomial methods

Properties of the UWVF

Uniform mesh
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Figure: Results for κ = 0.05 when p = 3, h = 1.0 and a coupling
parameter is σ = (κ+ c/h). Parameter c varies.
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Non-polynomial methods

Properties of the UWVF

Uniform mesh
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Figure: Results for κ = 0.05 when p = 5, h = 1.0 and a coupling
parameter is σ = (κ+ c/h). Parameter c varies.
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The UWVF of Helmholtz equation

Derivation

Notations
The ultra weak variational formulation for the Helmholtz problem
(3)-(4) is derived next.
Part of the mesh. Exterior boundary of an element Ωk is denoted
by Γk and outward unit normal by nk . The interface between
elements Ωk and Ωj is denoted as

∑

k,j .

Ωj

nk

∑

k,j Ωk

nj

∑

j,k

Γk
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The UWVF of Helmholtz equation

Derivation

Let pk satisfy the Helmholtz equation

∆pk + κ2
kpk = 0 in Ωk . (21)

We assume that smooth test function vk satisfy the adjoint
Helmholtz equation, i.e.

∆vk + κ2
kvk = 0 in Ωk . (22)



Computational modeling of time-harmonic wave propagation

The UWVF of Helmholtz equation

Derivation

We can write the following equation

N
∑

k=1

∫

∂Ωk

1

σ

(

−
1

ρk

∂pk

nk

− iσpk

)(

−
1

ρk

∂vk

nk

− iσvk

)

=
N
∑

k=1

∫

∂Ωk

1

σ

(

1

ρk

∂pk

nk

− iσpk

)(

1

ρk

∂vk

nk

− iσvk

)

−
N
∑

k=1

2
i

ρk

∫

∂Ωk

(

∂pk

∂nk

vk − pk

∂vk

∂nk

)

(23)

for all smooth test functions vk .
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The UWVF of Helmholtz equation

Derivation

Using Green’s identity we can write

∫

∂Ωk

(

∂pk

∂nk

vk − pk

∂vk

∂nk

)

=

∫

Ωk

(∆pkvk − pk∆vk) (24)

On the other hand, from equations (21) and (22) we know that

∆pk = −κ2
kpk and ∆vk = −κ2

kvk .

Therefore
∫

Ωk

(∆pkvk − pk∆vk) =

∫

Ωk

(−κ2
kpkvk + pkκ

2
kvk) = 0 (25)
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The UWVF of Helmholtz equation

Derivation

Hence, we obtain

N
∑

k=1

∫

∂Ωk

1

σ

(

−
1

ρk

∂pk

nk

− iσpk

)(

−
1

ρk

∂vk

nk

− iσvk

)

=
N
∑

k=1

∫

∂Ωk

1

σ

(

1

ρk

∂pk

nk

− iσpk

)(

1

ρk

∂vk

nk

− iσvk

)

(26)

Notice that on the interior interfaces the following conditions must
hold, also coupling forms (transmission conditions),

pk = pj on
∑

k,j

(27)

∂pk

∂nk

= −
∂pj

∂nj
on

∑

k,j

. (28)
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The UWVF of Helmholtz equation

Derivation

Defining a new function

Xk =

(

−
1

ρk

∂pk

∂nk

− iσpk

) ∣

∣

∣

∣

∂Ωk

, k = 1, . . . ,N. (29)

Substituting the boundary condition (4) and sufficient coupling forms
(transmission conditions) of (27)-(28) to the (26) and using new function (29)
we obtain

N
∑

k=1

∫

∂Ωk

1

σ
Xk

(

−
1

ρk

∂vk

∂nk

− iσvk

)

dA −
N
∑

k=1

N
∑

j=1

∫

∑

k,j

1

σ
Xj

(

1

ρk

∂vk

∂nk

− iσvk

)

dA

−
N
∑

k=1

∫

Γk

Q

σ
Xk

(

1

ρk

∂vk

∂nk

− iσvk

)

dA =

N
∑

k=1

∫

Γk

1

σ
g

(

1

ρk

∂vk

∂nk

− iσvk

)

dA,

for all vk satisfying the adjoint Helmholtz equation (22).
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The UWVF of Helmholtz equation

Derivation

To simplify notations we denote

Fk(Yk) =

(

1

ρk

∂vk

∂nk

− iσvk

)

on ∂Ωk (30)

and

Yk =

(

−
1

ρk

∂vk

∂nk

− iσvk

)

on ∂Ωk (31)

Then the UWVF can be written as

N
∑

k=1

∫

∂Ωk

1

σ
XkYkdA −

N
∑

k=1

N
∑

j=1

∫

∑

k,j

1

σ
XjFk(Yk)dA (32)

−
N
∑

k=1

∫

Γk

Q

σ
XkFk(Yk)dA =

N
∑

k=1

∫

Γk

1

σ
gFk(Yk)dA, (33)
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The UWVF of Helmholtz equation

Derivation

Discretization
We choose finite family of functions ϕk,ℓ, ℓ = 1, . . . ,Nk for each
Ωk that satisfy the adjoint Helmholtz equation (22). Hence

Ya
k =

Nk
∑

k=1

Yk,ℓ

(

−
1

ρk

∂ϕk,ℓ

∂nk

− iσϕk,ℓ

)

k = 1, . . . ,N (34)

Similarly

X a
k =

Nk
∑

k=1

Xk,ℓ

(

−
1

ρk

∂ϕk,ℓ

∂nk

− iσϕk,ℓ

)

k = 1, . . . ,N (35)

and

Fk(Y
a
k ) =

Nk
∑

k=1

Yk,ℓ

(

1

ρk

∂ϕk,ℓ

∂nk

− iσϕk,ℓ

)

k = 1, . . . ,N (36)

Using now (34)-(36) in equation (33) we obtain the discrete UWVF.
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The UWVF of Helmholtz equation

Derivation

In matrix form

(D − C)X = b ⇒
(

I − D
−1

C
)

X = D
−1

b. (37)

Matrix D is a Hermitian block diagonal i.e. D = diag(D1, . . . ,DN).
Let us write the form of the entries

D
ℓ,m
k =

∫

∂Ωk

1

σ

(

−
1

ρk

∂ϕk,m

∂nk

− iσϕk,m

)(

−
1

ρk

∂ϕk,m

∂nk

− iσϕk,m

)

(38)

The matrix C entries are

C
ℓ,m
k,j =

∫

∑

k,j

1

σ

(

1

ρj

∂ϕj ,m

∂nk

− iσϕj ,m

)(

1

ρk

∂ϕk,ℓ

∂nk

− iσϕk,ℓ

)

(39)

+

∫

∑

k,j

Q

σ

(

−
1

ρk

∂ϕk,m

∂nk

− iσϕk,m

)(

1

ρk

∂ϕk,ℓ

∂nk

− iσϕk,ℓ

)

(40)
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The UWVF of Helmholtz equation

Derivation

The RHS vector b can be constructed from

bℓ
k =

∫

Γk

1

ρ
g

(

1

ρk

∂ϕk,ℓ

∂nk

− iσϕk,ℓ

)

(41)



Computational modeling of time-harmonic wave propagation

Choice of the basis function

Plane wave basis

Plane wave (PW) basis

ϕk,ℓ =

{

exp (iκkdk,ℓ · xk) in Ωk

0, elsewhere

in which the direction dk,ℓ =
(

cos
(

2π ℓ−1
Nk

)

, sin
(

2π ℓ−1
Nk

))

.
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Choice of the basis function

Plane wave basis

Pros and cons of PW basis

◮ The UWVF integrals can be computed in a closed form

◮ ⇒ Efficient to compute.

◮ Ill-conditioning may occur when elements are small or at low
frequencies.

◮ May have challenges with sharp corners
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Choice of the basis function

Bessel basis

Bessel basis with scaling is of the form

ϕk,ℓ =

{

Jℓ(κk |xk−x0,k |)

Jℓ(κkhk )
e iℓθ in Ωk

0, elsewhere

where hk is the edge of an element, x0,k is the ”basis origin” and θ
is an angle. Bessel basis without scaling is

ϕk,ℓ =

{

Jℓ(κk |xk − x0,k |)e
iℓθ in Ωk

0, elsewhere

the order of Bessel function ℓ in an element Ωk is

ℓ = s −
pk − 1

2
− 1

where s = 1, . . . , pk .



Computational modeling of time-harmonic wave propagation

Choice of the basis function

Bessel basis

Pros and cons of Bessel basis

◮ The UWVF integrals must be computed using quadratures

◮ Slower to compute than PW basis

◮ Condition number is smaller for the scaled Bessel basis than it
is using PW basis at low frequencies or when element sizes are
small

◮ Help singularities
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Numerical results (Helmholtz)

Propagating plane wave

We seek the solution to
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h=0.03125

the problem

∆u + κ2u = 0 in Ω

∂u

∂n

+ iσu =
∂g

∂n

+ iσg on Γ

where g = exp(iκd · x)
and d = (cos(π/p), sin(π/p))
for plane wave propagation
and g = exp(i(α1(x + 1) + α2y))
where α2

1 + α2
2 = κ2,

α1 = iκ
√

β2 − 1 and α2 = βκ
with β > 1 for evanescent wave.
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Numerical results (Helmholtz)

Propagating plane wave
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Figure: One of the meshes on the LHS. The exact solution for the plane
wave propagation problem (center) is uex = exp(iκd · x) and for the
evanescent wave problem (RHS) uex = exp(i(α1(x + 1) + α2y)) where

α2

1
+ α2

2
= κ2, α1 = iκ

√

β2 − 1 and α2 = βκ with β > 1.
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Numerical results (Helmholtz)

Propagating plane wave
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Figure: Relative error (%) vs. the mesh size h for plane wave propagation
(LHS) and evanescent wave (center) and the condition number of matrix
D vs. mesh size (RHS).
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Numerical results (Helmholtz)

Singular 2D Helmholtz problem

Approximate u that satisfies

−1 −0.5 0 0.5 1
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∆u + κ2u = 0 in Ω

u = 0 on Γ1

∂u

∂n

+ iσu =
∂g

∂n

+ iσg on Γ2

where

g(r , θ) = J 2
3
(κr) sin(

2

3
θ).

The exact solution
to the L-shaped domain problem
is uex = g . This solution has
a singular derivative at the origin.
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Numerical results (Helmholtz)

Singular 2D Helmholtz problem

In simulations we use regular plane wave basis and Bessel basis. We
can use modified Bessel basis in which we take into account the
exact solution. The modified Bessel basis is of the form

ϕk,ℓ =







J|ℓ|(κk |xk − x0,k |)e
iℓθ in Ωk and if ℓ = −2/3

Jℓ(κk |xk − x0,k |)e
iℓθ in Ωk and if ℓ 6= −2/3

0, elsewhere

the order of Bessel function ℓ in an element Ωk is

ℓ =







s − pk−3
2 − 1, when s = 1, . . . , pk − 2

2
3 , when s = pk − 1
−2

3 , when s = pk
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Numerical results (Helmholtz)

Singular 2D Helmholtz problem

PW-Bessel-UWVF in an L-shaped domain (uniform).

We use modified Bessel basis in elements which lie near the singular
point (in 5 elements) and elsewhere we use regular plane wave
basis.

Table: Results using PW+Bessel basis functions in an uniform mesh.

Basis κ p error(%) max(Dcond) CPU Time [s]

PW+Bessel
0.05 5 1.0827 1.3196e6 20.7810
0.5 5 0.2498 1.3132e4 20.7004
5 7 0.1194 4.7782e3 35.4461
50 25 0.0246 2.6588e7 747.6763

Basis κ p error(%) max(Dcond) CPU Time [s]

PW
0.05 5 1.5173 1.3196e6 7.7368
0.5 5 1.0571 1.3132e4 7.6037
5 7 1.8760 4.7782e3 10.6958
50 25 2.8962 3.3511e5 73.4306
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Numerical results (Helmholtz)

Singular 2D Helmholtz problem

PW-Bessel-UWVF in an L-shaped domain (non-uniform).

Choosing the number of basis functions in a non-uniform mesh can
be obtained from

pk = round(κkhk + C (κkhk)
1/3)

where h is the edge of the element, C is a constant (C = 5 in our
simulations below) and if pk is even we set pk = pk − 1.
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Numerical results (Helmholtz)

Singular 2D Helmholtz problem

PW-Bessel-UWVF in an L-shaped domain (non-uniform).

Table: Results using PW+Bessel basis functions for the non-uniform
mesh.

Basis κ p error(%) max(Dcond) CPU Time [s]

PW+Bessel
0.05 3 2.3529 65.0767 25.3846
0.5 3 0.4960 14.3588 25.4662
5 3...7 1.8532 2.3514e4 33.2713
50 7..27 0.0454 1.2786e8 210.9513

Basis κ p error(%) max(Dcond) CPU Time [s]

PW
0.05 3 0.4999 11.2229 14.9222
0.5 3 0.4791 11.1942 17.3626
5 3...7 2.6257 2.3514e4 21.7997
50 7..27 2.1779 1.2786e8 161.4971
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The UWVF for the Navier problem

Figure: Fluid medium.
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The UWVF for the Navier problem

Figure: Fluid brain.
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The UWVF for the Navier problem

Figure: Example of modeling focused ultrasound of brain.
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The UWVF for the Navier problem

Navier equation

Let Ω be a computational domain with the boundary Γ = ∂Ω and
let Ω consists of non-overlapping elements, i.e. Ω = ∪N

k=1Ωk where
N is the number of elements. For each Ωk the Navier equation is

µ∆u + (λ+ µ)∇(∇ · u) + ω2ρu = 0 in Ωk (42)

where ω is the angular frequency of the field, u is the
time-harmonic displacement vector, λ and µ are the Lamé
constants and ρ is the density of the medium.
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The UWVF for the Navier problem

Lamé constants and wave speeds

The Lamé constants can be expressed as

µ =
E

2(1 − ν)
, λ =

Eν

(1 + ν)(1 − 2ν)
, (43)

where E is the Young’s modulus and ν is the Poisson ratio. The
wave speeds for the P-wave and S-wave are,

cP =

√

λ+ 2µ

ρ
, cS =

√

µ

ρ
. (44)
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Derivation of the UWVF

Traction operator

Traction operator T(n)(u) maps local displacements to local
tractions on any closed surface S and it is defined as

T
(n)(u) = 2µ

∂u

∂n
+ λn∇ · u + µn ×∇× u. (45)

where n is an outward unit normal to the surface S .
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Derivation of the UWVF

Traction operator

Traction operator T(n)(u) maps local displacements to local
tractions on any closed surface S and it is defined as

T
(n)(u) = 2µ

∂u

∂n
+ λn∇ · u + µn ×∇× u. (45)

where n is an outward unit normal to the surface S . In addition,
the complex conjugate of the traction operator T is

T(n)(u) = 2µ
∂u

∂n
+ λn∇ · u + µn ×∇× u (46)

and T(n)(u) = T(n)(u).
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Derivation of the UWVF

Faces and exterior boundary

Let Ωk and Ωj be neighboring elements and share a common face.
The interface between Ωk and Ωj is denoted by

∑

k,j . Therefore on
∑

k,j the following conditions hold

u|Ωk
= u|Ωj

(47)

T
(n|Ωk

)(u|Ωk
) = −T

(n|Ωj
)
(u|Ωj

) (48)

where n|Ωk
is an outward normal to Ωk and similarly n|Ωj

to Ωj

(note that n|Ωk
= −n|Ωj

).
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Derivation of the UWVF

Faces and exterior boundary

Let Ωk and Ωj be neighboring elements and share a common face.
The interface between Ωk and Ωj is denoted by

∑

k,j . Therefore on
∑

k,j the following conditions hold

u|Ωk
= u|Ωj

(47)

T
(n|Ωk

)(u|Ωk
) = −T

(n|Ωj
)
(u|Ωj

) (48)

where n|Ωk
is an outward normal to Ωk and similarly n|Ωj

to Ωj

(note that n|Ωk
= −n|Ωj

). On the exterior boundary Γ we have

T
(n)(u)− iσu = Q(−T

(n)(u)− iσu) + g on Γ (49)

where g is the source term, Q specifies the boundary conditions
and σ is a coupling parameter (flux parameter).
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Derivation of the UWVF

Isometry Lemma

It can be shown that

∑

k

∫

∂Ωk

σ−1
(

−T
(nk)(uk)− iσuk

)

·
(

−T(nk)(ek)− iσek

)

=
∑

k

∫

∂Ωk

σ−1
(

T
(nk)(uk)− iσuk

)

·
(

T(nk)(ek)− iσek

)

(50)

where uk is the solution of the Navier equation (42) and ek is the
test function that satisfies the adjoint Navier’s equation.
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Derivation of the UWVF

The UWVF

Using the “Isometry Lemma” and boundary conditions we obtain
the UWVF as

∑

k

∫

∂Ωk

σ−1Xk ·(−T(nk )(ek )− iσek )−
∑

k

∑

j

∫

∑

k,j

σ−1Xj ·(T
(nk )(ek)− iσek )

−
∑

k

∫

Γk

Qσ−1Xk ·(T
(nk )(ek)− iσek ) =

∑

k

∫

Γk

σ−1g ·(T(nk )(ek )− iσek ) (51)

where Xk = T(nk)(uk)− iσuk on ∂Ωk .



Computational modeling of time-harmonic wave propagation

Derivation of the UWVF

Discretization

The solution of the adjoint Navier equation is separated into three
components (Helmholtz decomposition): P-wave, SH-wave and
SV-wave. Therefore

ek = ek,P + ek,SH + ek,SV (52)

which satisfy ∇× eP = 0 and ∇ · eSH = ∇ · eSV = 0.
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Derivation of the UWVF

Similarly, the approximation for Xk is

Xk ≈

pk
P

∑

ℓ=1

[

x
P
k,ℓ

(

−T
(nk )(eP

k,ℓ)− iσe
P
k,ℓ

)]

+

pk
S

∑

ℓ=1

[

x
SH
k,ℓ

(

−T
(nk )(eSH

k,ℓ)− iσe
SH
k,ℓ

)]

+

pk
S

∑

ℓ=1

[

x
SV
k,ℓ

(

−T
(nk )(eSV

k,ℓ)− iσe
SV
k,ℓ

)]

.

where

e
P
k,ℓ =

{

ak,ℓ exp(iκPak,ℓ · x) in Ωk

0 elsewhere

e
SH
k,ℓ =

{

a
⊥

k,ℓ exp(iκSHak,ℓ · x) in Ωk

0 elsewhere

e
SV
k,ℓ =

{

a
⊥

k,ℓ × ak,ℓ exp(iκSV ak,ℓ · x) in Ωk

0 elsewhere

where ak,ℓ is the direction of propagation.
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Derivation of the UWVF

Discrete UWVF
Find Xh,k ∈ Vh,k , k = 1, 2, . . . ,N such that

∑

k

∫

∂Ωk

σ−1Xh,k · Yh,k −
∑

k

∑

j

∫

∑

k,j

σ−1Xh,j · Fk(Yh,k)

−
∑

k

∫

Γk

Qσ−1Xh,k · Fk(Yh,k) =
∑

k

∫

Γk

σ−1
g · Fk(Yh,k)

for all Yh,k ∈ Vh,k , k = 1, 2, . . . ,N where

Fk(Yh,k) ≈

pk
P

∑

ℓ=1

[

y
P
k,ℓ

(

T
(nk )(eP

k,ℓ)− iσe
P
k,ℓ

)]

+

pk
S

∑

ℓ=1

[

y
SH
k,ℓ

(

T
(nk )(eSH

k,ℓ)− iσe
SH
k,ℓ

)]

+

pk
S

∑

ℓ=1

[

y
SV
k,ℓ

(

T
(nk )(eSV

k,ℓ)− iσe
SV
k,ℓ

)]

. (53)
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Derivation of the UWVF

Matrices
The discrete UWVF can be written in a matrix form as

(D − C )X = b ⇒ (I − D−1C )X = D−1b (54)

Matrices D and C are sparse block matrices. Matrix D is a block
diagonal and Hermitian.
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Derivation of the UWVF

Matrices

A sparse block diagonal matrix is D = diag(D1,D2, . . . ,Dk , . . . ,DN). One
block Dk can be written as

D
k =





Dk
P,P,ℓ,m Dk

SH,P,ℓ,m Dk
SV ,P,ℓ,m

Dk
P,SH,ℓ,m Dk

SH,SH,ℓ,m Dk
SV ,SH,ℓ,m

Dk
P,SV ,ℓ,m Dk

SH,SV ,ℓ,m Dk
SV ,SV ,ℓ,m



 . (55)

where, for example,

D
k
P,SH,ℓ,m =

∫

∂Ωk

σ−1
(

−T
(nk )(eP

k,m)− iσe
P
k,m

)

·
(

−T
(nk )(eSH

k,ℓ)− iσeSH
k,ℓ

)

. (56)
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Derivation of the UWVF

Matrices

Sparse matrix C consists of blocks C k and C k,j . Matrix blocks C k are on the
diagonal and C k,j are on the off-diagonal of matrix C . Matrix block C k can be
written as follows

C
k =





C k
P,P,ℓ,m C k

SH,P,ℓ,m C k
SV ,P,ℓ,m

C k
P,SH,ℓ,m C k

SH,SH,ℓ,m C k
SV ,SH,ℓ,m

C k
P,SV ,ℓ,m C k

SH,SV ,ℓ,m C k
SV ,SV ,ℓ,m



 (57)

where, for example, C k
P,SH,ℓ,m is of the form

C
k
P,SH,ℓ,m =
∫

Γk

Qσ−1
(

−T
(nk )(eP

k,m)− iσe
P
k,m

)

·
(

T
(nk )(eSH

k,ℓ)− iσeSH
k,ℓ

)

, (58)

similarly others.
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Derivation of the UWVF

Matrices

The off-diagonal block matrix C k,j is as follows

C
k,j =







C
k,j
P,P,ℓ,m C

k,j
SH,P,ℓ,m C

k,j
SV ,P,ℓ,m

C
k,j
P,SH,ℓ,m C

k,j
SH,SH,ℓ,m C

k,j
SV ,SH,ℓ,m

C
k,j
P,SV ,ℓ,m C

k,j
SH,SV ,ℓ,m C

k,j
SV ,SV ,ℓ,m






(59)

where, for example, C
k,j
P,SH,ℓ,m is of the form

C
k,j
P,SH,ℓ,m =
∫

∑

k,j

σ−1
(

T
(nk )(eP

j,m)− iσe
P
j,m

)

·
(

T
(nk )(eSH

k,ℓ)− iσeSH
k,ℓ

)

, (60)

others can be derived in a similar manner.
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Numerical results (Navier)

Plane wave propagation in a unit cube

The exact solution is of the form

u = A1d exp(iκPx · d) + A2dSH exp(iκSx · d)

+ A3dSV exp(iκSx · d)

where the wave numbers are κP = ω/cP , κS = ω/cS , the direction
d ≈ [−0.73 0.45 0.51], dSH = d⊥, dSV = d⊥ × d and the
amplitudes A1 = A2 = A3 = 1. In addition, ∇× uP = 0 and
∇ · uSH = ∇ · uSV = 0. As a boundary condition we choose Q = 0.
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Numerical results (Navier)

Flux parameter

In numerical simulations we use an ad hoc choice for coupling
parameter (flux parameter) that is

σ = ωρR{cP}I (61)

where I is the unit matrix.
More investigations of the optimal flux parameter will be
investigated in (near) future.
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Numerical results (Navier)

Mesh 1

Figure: The mesh. The maximum centroid-vertex distance (element
diameter) for element h = 0.4979. Number of tetrahedra 24, faces 60
and vertices 14.
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Numerical results (Navier)

Results for p-convergence
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Figure: Results when κP = 4.0551, κSH = κSV = 8.0503 with different
ratios between pP/pS and mesh size is fixed.
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Numerical results (Navier)
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Numerical results (Navier)
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Numerical results (Navier)
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Numerical results (Navier)

Table: Results when pP = 25 and pS = 50, mesh is fixed and wave
number varies.

κP κS error (%) max(cond(Dk))

4.0551 8.0503 0.0321 5.8143e8

5.0689 10.0629 0.1319 4.5035e7

6.0826 12.0755 0.4232 5.4503e6

7.0964 14.0881 1.1347 9.2297e5

8.1102 16.1007 1.6142 2.0051e5
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DGM and UWVF

FEM, DGM and UWVF

◮ FEM:
◮ uses finite elements such as triangles or tetrahedra
◮ uses polynomial test and trial functions (piecewise polynomial)
◮ polynomial degree same over the domain

◮ standard DGM:
◮ uses finite elements such as triangles or tetrahedra
◮ uses polynomial test and trial functions (discontinuous)
◮ polynomial degrees may vary from element to element
◮ allows discontinuities over elements

◮ UWVF:
◮ uses finite elements such as triangles or tetrahedra
◮ uses plane wave test and trial functions (discontinuous)
◮ number of basis functions may vary from element to element
◮ allows discontinuities over elements
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DGM and UWVF

Starting from wave equation

∇ ·

(

1

ρ
∇P(r, t)

)

−
1

ρc2

∂2P(r, t)

∂t2
= 0, (62)

and defining new vectors

P =









P1

P2

P3

P4









=













∂P
∂t
1

ρ
∂P
∂x1

1

ρ
∂P
∂x2

1

ρ
∂P
∂x3













then we can write the following equations

1

c2ρ

∂P1

∂t
− ∇ ·





P2

P3

P4



 = 0,

ρ
∂

∂t





P2

P3

P4



 − ∇ · P1 = 0.

References: T. Lähivaara, M. Malinen, J. P. Kaipio, and T. Huttunen, Computational Aspects of the
Discontinuous Galerkin Method for the Wave Equation, Journal of Computational Acoustics, Vol. 16,
No. 4 (2008) 507-530.
T. Lähivaara and T. Huttunen, A non-uniform basis order for the discontinuous Galerkin method of the
3D dissipative wave equation with perfectly matched layer Journal of Computational Physics,
229(13):5144-5160, 2010
P. Monk and G. R. Richter: A Discontinuous Galerkin Method for Linear Symmetric Hyperbolic Systems
in Inhomogeneous Media, Journal of Scientific Computing, Volumes 22 and 23, June 2005, 443- 477
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DGM and UWVF

In a matrix form

A
∂P

∂t
+

3
∑

j=1

Aj
∂P

∂xj
= 0 (63)

where A = diag( 1

c2ρ
, ρ, ρ, ρ) and

A1 =









0 −1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0









A2 =









0 0 −1 0
0 0 0 0
−1 0 0 0
0 0 0 0









A3 =









0 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 0









References: T. Lähivaara, M. Malinen, J. P. Kaipio, and T. Huttunen, Computational Aspects of the
Discontinuous Galerkin Method for the Wave Equation, Journal of Computational Acoustics, Vol. 16,
No. 4 (2008) 507-530.
T. Lähivaara and T. Huttunen, A non-uniform basis order for the discontinuous Galerkin method of the
3D dissipative wave equation with perfectly matched layer Journal of Computational Physics,
229(13):5144-5160, 2010
P. Monk and G. R. Richter: A Discontinuous Galerkin Method for Linear Symmetric Hyperbolic Systems
in Inhomogeneous Media, Journal of Scientific Computing, Volumes 22 and 23, June 2005, 443- 477
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DGM and UWVF

Weak form in DGM is

∫

Ωk

v
T



A
P

∂t
+

3
∑

j=1

Aj

∂P

∂xj



 (64)

=

∫

Ωk

v
TA

∂P

∂t
−

3
∑

j=1

∂v
T

∂xj

AjP +

∫

Γ(Ωk )
v

TFP = 0 (65)

where F is the flux matrix. On the other hand F = F+ + F− where

F+ =
1

2









−1
n1
n2
n3









(−1, n1, n2, n3), F− = −
1

2









1
n1
n2
n3









(1, n1, n2, n3)

References: T. Lähivaara, M. Malinen, J. P. Kaipio, and T. Huttunen, Computational Aspects of the
Discontinuous Galerkin Method for the Wave Equation, Journal of Computational Acoustics, Vol. 16,
No. 4 (2008) 507-530.
T. Lähivaara and T. Huttunen, A non-uniform basis order for the discontinuous Galerkin method of the
3D dissipative wave equation with perfectly matched layer Journal of Computational Physics,
229(13):5144-5160, 2010
P. Monk and G. R. Richter: A Discontinuous Galerkin Method for Linear Symmetric Hyperbolic Systems
in Inhomogeneous Media, Journal of Scientific Computing, Volumes 22 and 23, June 2005, 443- 477
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DGM and UWVF

Finally we can write

∫

Ωk

v
T



A
P

∂t
+

3
∑

j=1

Aj
∂P

∂xj



+

∫

Γi (Ωk )

v
TF−(P̃ − P) (66)

−

∫

Γe (Ωk )

v
T (F −N )P +

∫

Γe (Ωk )

v
T
g (67)

where we have used the knowledge that F−P̃ = F−P and (F −N )P = g .
References: T. Lähivaara, M. Malinen, J. P. Kaipio, and T. Huttunen, Computational Aspects of the
Discontinuous Galerkin Method for the Wave Equation, Journal of Computational Acoustics, Vol. 16,
No. 4 (2008) 507Ű530.
T. Lähivaara and T. Huttunen, A non-uniform basis order for the discontinuous Galerkin method of the
3D dissipative wave equation with perfectly matched layer Journal of Computational Physics,
229(13):5144-5160, 2010
P. Monk and G. R. Richter: A Discontinuous Galerkin Method for Linear Symmetric Hyperbolic Systems
in Inhomogeneous Media, Journal of Scientific Computing, Volumes 22 and 23, June 2005, 443- 477
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DGM and UWVF

Summary of the UWVF and DGM

◮ Above wave equation based weak formulation can be modified
into the time-harmonic equation

◮ The UWVF is an upwind discontinuous Galerkin method

◮ Differences between the UWVF and standard DGM are the
form of the fluxes, basis functions and degrees of freedom

◮ Fluxes and averages over the elements play important role in
the derivation of variational formulations

◮ Discontinuities allowed in the basis functions
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