
CSC – Tieteen tietotekniikan keskus Oy
CSC – IT Center for Science Ltd.

Parallel Programming
with MPI: Exercises

FICS Summer School 2010

General instructions

The exercises can be done on CSCs Louhi Cray supercomputer, in your own laptops, or in some other
Linux based cluster. If you want to use your own laptop you need to have a Fortran compiler and an MPI
library installed.

On Louhi you can either use your own Louhi account (if you have one), or alternatively one of the
training accounts which will be provided to you during the first MPI lecture.

One should use a ssh client to connect to Louhi. On Windows there are several graphical ssh clients that
you may use, while on Mac and Linux you can use the following command in the terminal:

ssh –X –l [username] louhi.csc.fi

The exercise materials can be found on the webpage, and under the $WRKDIR directory in Louhi when
you use one of the training accounts.

Note that the training accounts will be reset and erased immediately after the course; please copy all
the work you have done in them to a USB memory stick or to some remote server!

For editing files you can use e.g. emacs. Also other popular editors such as vim and nano are available.

Louhi User's Guide can be found at http://www.csc.fi/english/pages/louhi_guide

Compliling
You can compile your programs as follows:
Fortran: ftn -o my_mpi_prog my_mpi_prog.f90
C: cc -o my_mpi_prog my_mpi_prog.c

Running in a non-interactive mode
A program is run by creating a batch job script with a text editor which is then submitted to the queuing
system. In the following example script a program is run using 16 MPI processes:

#!/bin/sh
#PBS -N test
#PBS -l walltime=00:15:00
#PBS -l mppwidth=16
cd $PBS_O_WORKDIR
aprun -n 16 ./my_mpi_prog

The job-script can be submitted to a queue as follows:
 qsub job_script
The output and possible error messages will be in files test.oxxx and test.exxx, where xxx is the system
generated ID of the run.

Running in a interactive mode
For debugging purposes (and in this course) programs can be run interactively by launching aprun
directly from the command line:
 aprun -n 4 ./my_mpi_prog

Compiling and running on
Louhi

On Linux, there are usually commands mpicc and mpif90 for building MPI programs. They can be used
to compile a program as follows:

Fortran: mpif90 -o my_mpi_prog my_mpi_prog.f90
C: mpicc -o my_mpi_prog my_mpi_prog.c

The parallel program can be launched with the mpirun command:

mpirun -np 4 ./my_mpi_prog

Compiling and running on a
Linux PC or cluster

The Game of Life (GoL) is a cellular automaton devised by John Horton
Conway in 1970.

a) Study the GoL at
http://en.wikipedia.org/wiki/Conway's_Game_of_Life

In this exercise, a straightforward MPI implementation of the Game of Life
is discussed. A working serial version of GoL is given in
exercises/gameoflife_serial.f90. This program draws the board into
file life_nn.pbm, where nn is the iteration. The board is printed after
every few iterations, that is adjustable You may view the image with the
xview command, e.g. “xview -zoom 400 life_100.pbm”

b) Your mission is now to parallelize the GoL with MPI, by dividing the
board in columns and assigning one column to one task. The tasks are able
to update the board independently everywhere else than on the column
boundaries - there communication of a single column with the nearest
neighbor (the board is periodic, so the first column of the board is
'connected' to the last column) is needed. Make all the MPI tasks print their
own parts of the board on different files, e.g. life_nn_mm.pbm, where nn is
the iteration and mm is the rank ID. You may start directly from the serial
version, or by inserting the proper MPI routines into a skeleton code
available at exercises/gameoflife_mpi.f90

c) Perform the column exchange communication with non-blocking
routines. Try to overlap the communication with the interior board update.

d) Modify the output such that the full board is printed in a single file. You
may do this by gathering the full board in a single MPI rank, which prints it
out.

Exercises

