
Pietro Faccioli
Trento University, INFN and LISC 

  

Stochastic path integral
approaches to the dynamics of 

bio-molecules

Lammi Lectures (2010)



L.I.S.C.,.

Advertisement:

Lattice QCD Solid State Phys.Nuclear Phys. Stat. Biophys. 

We welcome 
postdoc applications 

for 2011



Outline
� Part I: Dynamics of rare biomolecular 

transitions
� biomolecules (in particular proteins)
� decoupling of time scales
� Theoretical description
� MD numerical simulations

� Idea
� Problems in practical applications
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 Part II: Stochastic Path Integral 
Methods to Biomolecular dynamics

 Dominant Reaction Pathways (DRP)
 Effective Stochastic Theory (EST)
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Part 1
Dynamics of Biomolecules
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* Biopolymers
 Proteins
 Nucleic Acids 
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* Membranes

* ....
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Amino-acids

• Proteins are bio-polymers 
made of 20 different types 
of amino-acids:

Ala, Ile, Leu, Met, Phe, 
Pro,Trp, Val, Asp, Cys, Gln, 
Gly, Ser, Thr, Tyr,Arg, His, 

Lys, Asp, Glu 
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Poly-Peptide Chain

Peptide Bond

Energetics:

*  Bonded ~ 100 Kcal/mole
*  Non-Bonded ~ 1 Kcal/mole
*  KT (T=300o K) = 0.6 kcal/mole

Relevant low-energy dof:

* Torsional Angles

Introduction



Some open theoretical research 
fields

 Protein folding/misfolding
 order-disorder transitions in natively 

unfolded proteins
 Protein-protein interaction (involved in 

cell signaling)
 ...

9Introduction



At room temperature, proteins assume a “unique” 
and well-defined 3D conformation (native state). 

Protein Native State

X Ray- Cristallography
N.M.R.

Introduction



The Protein Folding Problem: 

“Part I”: What is the sequence-structure 
relationship? i.e. can we predict the native state given 
the chemical composition of the poly-peptide chain? 
Implications: drug design, …

“Part II”: Understanding the networks of transition 
pathways which take from the denatured conformations 
to the native state: how does a protein fold? 
Implications: amiloydogenic pathologies,…

Introduction
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Protein Folding Transitions

PF, M.Sega, F.Pederiva, and H. Orland, 
“Dominant Pathways in Protein Folding”, 
  Phys. Rev. Lett. 2006
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The Folding Pathway Problem
“Part II” of the protein folding problem

RNA, denaturation Biological function

Denatured State
 

Native State
X-ray, NMR
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The Folding Pathway Problem
“Part II” of the protein folding problem

RNA, denaturation Biological function

Denatured State
 

Native State
X-ray, NMR

Implications:
Alzheimer, Mad-Cow,
Cistis Fibrosis..

Introduction



Experiments on
 Protein Folding Kinetics

Φ-value 
analysis

Optical Probes: 
E.g.: F.R.E.T. 

Folding 
Rates

Structure 
of the 

transition  
state

Relevant 
time-scales

Introduction



Multiple kinetic time scales:

15

Quantum yield
(bi-exponential fit)

slowest rate vs temperature

Introduction



Internal time scales in 
macromolecular systems

Local 
structures 
formation

Introduction

Rotation 
dihedral 
angles

Protein 
folding



Theoretical Modeling of 
Biomolecular Physics
� Mathematical representation of 

biomolecules (choice of the relevant 
degrees of freedom)

 Theory for the dynamics
 Quantum mechanics
 Newtonian dynamics
 Langevin dynamics

� Theory for the interactions

17Introduction



Mathematical Representations of Macro-molecules

Choice of the most relevant degrees of freedom.

All-atom models:
effective degrees of freedom are atomic nucler coords

Reduced models: 
effective degrees of freedom are groups of atoms 
(e.g. amino-acids or sub-parts of them)

Two choices
Are most common

Coarse Graining

Introduction



Theoretical modeling of 
biomolecules

19

First principles: solving the time-dependent Schroedinger equation for a 
system consisting of ~10,000 atoms, in which electrons and nuclei interact 
through the Coulomb force and are subject to the Pauli principle.

Classical MD simulations:
* Replacing the chemistry of electrons with empiric interactions between 
atomic nuclei

* Describing the dynamics of atomic nuclei at the classical level

Is it justified? Does it work?

Introduction



Molecular Dynamics

20

Newton’s  Eq.s 

All atom: protein atoms + solvent atoms Explicit Solvent:

Implicit Solvent: Only protein atoms 
Modify Newton’s Eq. 
Introduce effective interactions

Miẍi = −∇iU(X, Y )
mkÿk = −∇kU(X, Y )

i = 1, . . . , Np

k = 1, . . . , Ns

Miẍi = −∇iU(X)− γẋk + Rk(t)

Introduction
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Over-damped Langevin Dynamics

mẌ = −γẊ −∇U(X) + R(t)

For molecules this term is damped  after 0.1 ps, while the shortest 
dynamics takes place at ns time scale

Ẋ = − 1
γ
∇U(X) + ξ(t)

〈ξi(t)ξj(0)〉 = 3
kBT

γ
δ(t) δij

Introduction



MD simulations
 In overdamped Langevin dynamics:

 In all-atom Hamiltonian MD 
 Velocity-Verlet + Nose’-Hoover, ....

22

x(i + 1) = x(i) − ∆t

γ
∇U(x(i)) +

√
2D∆tη(i)

ẋ(t) = − − 1
γ
∇U(x(i)) + R(t)

Introduction



MD simulations
 In overdamped Langevin dynamics:

 In all-atom Hamiltonian MD 
 Velocity-Verlet + Nose’-Hoover, ....

22

x(i + 1) = x(i) − ∆t

γ
∇U(x(i)) +

√
2D∆tη(i)

ẋ(t) = − − 1
γ
∇U(x(i)) + R(t)

interested in trying
for yourself ? see 
me later...

Introduction



Computational Limitations of the 
Molecular Dynamics Simulations
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Rare Events by MD simulations 

Reactive trajectories are determined in the Newtonian 
formalism,  i.e. following the evolution of the system 
at equal discretized time steps dt Time

t0
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Rare Events by MD simulations 

For protein folding:
Typical # of time steps ~ 1012

Reactive trajectories are determined in the Newtonian 
formalism,  i.e. following the evolution of the system 
at equal discretized time steps dt

t0 + dt

Time
t0

t0 + 2dt

t0 + 3dt

t0 + 4dt
….

Introduction



All-Atom Theoretical Simulations 
of Protein Folding

Time Scales in the Protein Folding Problem:

Local 
structures 
formation

FOLDING
TIME

Introduction

Rotation 
dihedral 
angles
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All-Atom Theoretical Simulations 
of Protein Folding

Molecular 
Dynamics 

Simulations

Time Scales in the Protein Folding Problem:

Local 
structures 
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Protein 
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Conclusions of part I
 Classical simulations of bio-molecules may 

provide at least reasonable standpoint
 The Langevin dynamics offers a scheme for 

implicit solvent simulations
 Unfortunately the direct integration of the Eq. 

of motion is very inefficient

26Introduction



27

....we need new ideas, rather than better computers....

....and that’s where more advanced stochastic approaches
can be useful...(hopefully!)



Part II
Stochastic Path Integral 

Methods for the 
Dynamics of Biomolecules

28



Computational Limitations of the 
Molecular Dynamics Simulations
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* How to avoid investing time simulating the wondering in the meta-stable 
state?
* How to avoid the problems related to the decoupling of time scales?
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Path integral representation of 
Langevin dynamics

30

Xl+1 −Xl = −D0 ∆t
kBT ∇U(Xl) +

√
2D0∆t Rl,

〈Ra
i l Rb

j l′〉 = δij δll′ δab.

Goal: compute the prob. of a given path: (X1,X2, . . . ,XNt).
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) 3NpNt
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∏Nt

j=1 exp
[
−R2

j
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]
.

∏Nt

i=1 dRi

Step 2: use Eq. (1) to change variable from R’s to X’s:

P (X1|XNp ; Nt∆t) =
∫ (∏Nt

i=1 dXi

)
e−

−
PNt−1

l=1

„
Xl+1−Xl+D0

∆t
kBT

∇U(Xl)
«2

4D0∆t
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Resolution of the ambiguity

(I)
∫ xN

x1
∇U(x) · dx ≡ limN→∞

∆t→0

∑N−1
l=1 (xl+1 − xl) ·∇U(xl)

Step 3: Expand the exponent. It contains an Ito integral
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Resolution of the ambiguity

(I)
∫ xN

x1
∇U(x) · dx ≡ limN→∞

∆t→0

∑N−1
l=1 (xl+1 − xl) ·∇U(xl)

Step 3: Expand the exponent. It contains an Ito integral

But the Fundamental Theorem of the Ito Calculus is

(I)
∫ xN

x1

∇U(x) · dx = U(xN )− U(x1)−
1

βγ

∫ t

0
dτ ∇2U(x(τ)),



Path Integral representation

32

P (xf , t|xi) = e−
β
2 (U(xf )−U(xi))

∫ x(t)=xf

x(0)=xi
Dx e−Seff [x(τ)]

Seff [X(t)] =
∫ t
0 dτ

(
Ẋ2

4D0
+ Veff (X)

)

Veff (X) = D0
4(kBT )2

(
(∇U(X))2 − 2kBT∇2U(X)

)

Hence, we arrive to:



Fokker-Planck Equation
The probability P(Xf,t|Xi) is the Green’s function of the Fokker-
Planck operator (by inspection: try differentiating with respect to t)

∂

∂t
P (x, t) = D∇ [ (∇+ β∇U(x)) P (x, t) ]

{
∂

∂t
−D∇[(∇+ β∇U(x))]

}
P (xf , t|xi) = δ(xf − xi)δ(t)

This is equivalent to saying that it is the solution of the 
Fokker-Planck Eq. 

With the initial condition: lim
t→0

P (x, t) = δ(xf − xi)



Thermal Equilibrium

34

Hence, the LE (FP) describe the approach to thermal equilibrium.

An important property: in the long-time limit:



Thermal Equilibrium

34

P (x, t)→ 1
Z

exp
(
−U(x)

kBT

)

Hence, the LE (FP) describe the approach to thermal equilibrium.

An important property: in the long-time limit:



If we perform the simple substitution:

Into the Fokker-Planck Eq., we obtain a new Eq.:

P (x, t) ≡ e−
βU(x)

2 ψ(x, t)
(

β ≡ 1
kBT

)

Quantum analogy
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If we perform the simple substitution:

Into the Fokker-Planck Eq., we obtain a new Eq.:

Ĥeffψ(x, t) = − ∂

∂t
ψ(x, t)

P (x, t) ≡ e−
βU(x)

2 ψ(x, t)
(

β ≡ 1
kBT

)

Quantum analogy

Ĥeff = − 1
βγ

∇2 + β Veff (x)

Veff (x) =
1
4γ

(
(∇U(x))2 − 2

β
∇2U(x)

)
.



Quantum analogy

The Langevin diffusion of a system 
subject to a potential U can  be mapped 
on the propagation in imaginary time of 

a system subject to the quantum 
Hamiltonian containing the effective 

potential Veff



Conditional probabilities as  
stochastic path integrals
Consider the time-dependent conditional probability:

P (xf , t|xi) = e−
β
2 (U(xf )−U(xi))

∫ x(t)=xf

x(0)=xi
Dx e−Seff [x(τ)]
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Conditional probabilities as  
stochastic path integrals
Consider the time-dependent conditional probability:

t

P (xf , t|xi) = e−
β
2 (U(xf )−U(xi))

∫ x(t)=xf

x(0)=xi
Dx e−Seff [x(τ)]

Seff =
∫ t
0 dτ βγ

4 ẋ2(τ) + Veff [x(τ)]
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The microscopic connection

 Empirical force fields 

39

 Quantum Chemistry 
calculationsGromos, Amber, Charmm, ...
DFT, PM3, PM6, ...

Veff (x) = β
4γ

(
(∇U(x))2 − 2

β∇
2U(x)

)



The microscopic connection

 Empirical force fields 

39

 Quantum Chemistry 
calculationsGromos, Amber, Charmm, ...
DFT, PM3, PM6, ...

Veff (x) = β
4γ

(
(∇U(x))2 − 2

β∇
2U(x)

)

Expensive part!
one needs to be 
clever



The Dominant Reaction Pathways 
(DRP) approach
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The Dominant Reaction Pathways 
(DRP) approach

The most probable (DOMINANT) REACTION PATHWAYS 
are those which minimize the effective action Seff.
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The Dominant Reaction Pathways 
(DRP) approach

The most probable (DOMINANT) REACTION PATHWAYS 
are those which minimize the effective action Seff.

In the low temperature limit          , thermal fluctuations 
around the DRP provide small corrections

β →∞

P (xf , t|xi) = e−
β
2 (U(xf )−U(xi))

∫ x(t)=xf

x(0)=xi
Dx e−Seff [x(τ)]



We can by-pass the direct solution of Newton equations and obtain 
directly the most probable folding trajectories using 
Hamilton-Jacobi (HJ) least-action principle

The effective action Seff is simplectic: Eeff is conserved! 

Hamilton-Jacobi Action

NB: first derived in R. Elber & D.Shalloway, JCP 112 (2000) 5539.

SHJ =
√

βγ
∫ xf

xi
dl

√
Eeff + Veff [x(l)]



Characterizing reactions by  
Dominant Reaction Pathways 

P.F., M.Sega, F.Pederiva and H.Orland, ”Dominant Protein Folding Pathways”, Phys. Rev. Lett. 97 (2006), 108101

Configuration space:
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Characterizing reactions by  
Dominant Reaction Pathways 

P.F., M.Sega, F.Pederiva and H.Orland, ”Dominant Protein Folding Pathways”, Phys. Rev. Lett. 97 (2006), 108101

SHJ =
√

1
D

∫ XN

XD
dl

√
Veff [x(l)] + Eeff

Reactant state
Product State 

Configuration space:



Transition path times
The information about the time evolution is not lost: it 
can be recovered starting from the well-known HJ 
relationship

This represents the time along the path, after the transition 
has been initiated.

t(x) =
∫ x

xi
dl 1q

4
βγ (Eeff+Veff [x(l)])



Thermal fluctuations

E. Autieri, P.F, M.Sega,  F.Pederiva, and H.Orland, ”Dominant Reaction Pathways in High Dimensional Systems”, JCP 2008
 

Problem: account for small fluctuations around the DRPs:

Step 1: convert to the time reprn: XD

XN
xDRP(l)

∆τn,n+1 = ∆ln,n+1√
4D(Veff [X(n)]+Eeff )



Thermal fluctuations
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Thermal fluctuations

E. Autieri, P.F, M.Sega,  F.Pederiva, and H.Orland, ”Dominant Reaction Pathways in High Dimensional Systems”, JCP 2008
 

Problem: account for small fluctuations around the DRPs:

Step 1: convert to the time reprn: XD

XN
xDRP(l)

Step 3: Sample by Monte Carlo

TIME STEPS ARE CHOSEN LARGE OR SMALL ACCORDING TO THE DRP

∆τn,n+1 = ∆ln,n+1√
4D(Veff [X(n)]+Eeff )

Step 2: derive the “best” Trotter discretization

P (Xf , τ(N)|Xi) = e−
β
2 (U(Xf )−U(Xi))

∫ ∏N
n=1 dX(n) e

−β
PN−1

n=1 ∆τn,n+1

»
γ
4

“
X(n+1)−X(n)

∆τn,n+1

”2
+Veff [X(n)]

–



The DRP algorithm
 Step 1: “throw the first rope” (as in TPS)

 e.g.: high temperature unfolding, biased 
dynamics, ...

 Step 2: Minimize numerically the HJ effective 
action 
 e.g.: simul. annealing, FIRE, ...

 Step 3: Sample thermal fluctuations around DRP if 
necessary

45



Exploration of the path space
 Simple simulated annealing algorithms 

tend to get stuck in local minima
 However we have found that MD-based 

algorithms (e.g. FIRE ) are much more 
efficient

46

Overcoming action
barriers
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In HJ formalism time variable has disappeared -> no more problems with 
decoupling of time scales!

MD

 dtMD: O(1012)

Text

DRP

dl

DRP:

O(102)

Text

Avoid investing computational time when 
the system is not performing a transition
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Transition by MD simulations 

For protein folding:
Typical # of time steps ~ 1012

Reactive trajectories are determined in the Newtonian 
formalism,  i.e. following the evolution of the system 
at equal discretized time steps dt

t0 + dt

Time
t0

t0 + 2dt

t0 + 3dt

t0 + 4dt
….
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The Dominant Reaction Pathways are determined 
in the Hamilton-Jacobi formalism, i.e. following the 
evolution from xi to xf by discretized distance steps:

Distance

0
dl
2dl
3dl

Transition by DRP simulations

4dl
For protein folding:
Typical # of path steps ~ 102
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The transition state is usually defined from commitment analysis:

Finding the transition state

P (Xf |XTS) = P (Xi|XTS)

To leading-order in kBT one obtains the condition:

Which can be easily solved, once the DRP is known.

U(Xf ) +
2√
kBT

√
1
γ

∫ Xf

XT S

dl
√

Veff (XTS) + Eeff

= U(Xi) +
2√
kBT

√
1
γ

∫ Xi

XT S

dl
√

Veff (XTS) + Eeff



Reaction Rates (quick and dirty)

51

k ≡
∫

TS d!σ · !J

!J(x, t|xi) = − 1
γ

(
kBT !∇+ !∇U(x)

)
P (x, t|xi)

Calculating the rates involves evaluating the Fokker-Planck probability 
INCLUDING THE NORMALIZATION

Reactant Product

Dividing 
surface TS
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k ≡
∫

TS d!σ · !J

!J(x, t|xi) = − 1
γ

(
kBT !∇+ !∇U(x)

)
P (x, t|xi)

Calculating the rates involves evaluating the Fokker-Planck probability 
INCLUDING THE NORMALIZATION

Reactant Product

Dividing 
surface TS

Step 1Step 2



Non-Equilibrium fluctuations

52

Saddle point expansion beyond the leading order:

y(τ) = x(τ) − x̄(τ)

Seff [x] ! Seff [x̄] + δS[x̄]
δx y(τ) + 1

2
δ2S[x̄]
δxδx y2(τ) + . . .

P (xf , t|xi) ! e−Seff [x̄]

∫
Dy e−

1
2

δ2S[x̄]
δxδx y2(τ)

= N

√
1

detF [x̄]
e−Seff [x̄]

F [x̄] =
1
2

δ2S[x̄]
δxδx

=
(
− 1

2D

d2

dt2
+ V ′′

eff [x̄]
)

Fluctuation Operator



Non-Equilibrium fluctuations

52

Saddle point expansion beyond the leading order:

y(τ) = x(τ) − x̄(τ)

Seff [x] ! Seff [x̄] + δS[x̄]
δx y(τ) + 1

2
δ2S[x̄]
δxδx y2(τ) + . . .

P (xf , t|xi) ! e−Seff [x̄]

∫
Dy e−

1
2

δ2S[x̄]
δxδx y2(τ)

= N

√
1

detF [x̄]
e−Seff [x̄]

F [x̄] =
1
2

δ2S[x̄]
δxδx

=
(
− 1

2D

d2

dt2
+ V ′′

eff [x̄]
)

Fluctuation Operator



Determining P(x,t|xi) 

53

P (xf , t|xi) = e−
β
2 (U(xf )−U(xi)) N ×

∫ xf

xi

Dx e−
R t
0 dτ βγ

4 ẋ2+Veff [x(τ)]
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Determining P(x,t|xi) 

53

P (xf , t|xi) = e−
β
2 (U(xf )−U(xi)) N ×

∫ xf

xi

Dx e−
R t
0 dτ βγ

4 ẋ2+Veff [x(τ)]

F̂ = −βγ

2
d2

dτ2
+ ∂i∂jVeff [x̄(τ)]Fluctuation operator:

N e−Seff [x̄]

∫ 0

0
Dy e−

R t
0 dτ βγ

4 ẏ2+y(τ)F̂ [x̄]y(τ)

P (xf , t|xi) = e−
β
2 (U(xf )−U(xi)) e−Seff [x̄] N

√
1

detF [x̄]

x(τ) = x̄(τ) + y(τ)

Expand around the DRP:

DRP

F̂ [x̄]i,jk,m =
−β

∆tm+1,n + ∆tm,m−1
δi,j ×

[
δk,m+1

∆tm+1,n
− δk,m

(
1

∆tm+1,n
+

1
∆tm+1,n

)
+

δk,m−1

∆tm+1,n

]

+
∂2Veff (x̄(k))

∂xi∂xj
δk,m

time slice labels

coordinate labels
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P (xf , t|xi) = e−
β
2 (U(xf )−U(xi)) e−Seff [x̄] N

√
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detF [x̄]

Fluctuation determinants
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P (xf , t|xi) = e−
β
2 (U(xf )−U(xi)) e−Seff [x̄] N

√
1

detF [x̄]

Fluctuation determinants

division of two large numbers
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P (xf , t|xi) = e−
β
2 (U(xf )−U(xi)) e−Seff [x̄] N

√
1

detF [x̄]

Fluctuation determinants

division of two large numbers

Trick: multiply and devide by the probability for an  harmonic oscillator



54

P (xf , t|xi) = e−
β
2 (U(xf )−U(xi)) e−Seff [x̄] N

√
1

detF [x̄]

Fluctuation determinants

division of two large numbers

Trick: multiply and devide by the probability for an  harmonic oscillator

P (xf , t|xi) = PHO(xi, t|xi)× e−
β
2 (U(xf )−U(xi)) e−Seff [x̄]

e−Seff [x̄HO ]

√
det

(
F̂−1[x̄HO] F̂ [x̄]

)

Known analytically

NB: 1. the fluctuation determinants yields the “entropy” of the path
2. to lowest order in kBT it may be neglected!



The reaction current:
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!J(xf , t|xi) = PHO(xi, t|xi) e−
β
2 (U(xf )−U(xi)) e−Seff [x̄]

e−Seff [x̄HO ]

×
√

det
(
F̂−1[x̄HO ] F̂ [x̄]

) (
1
2

!̇̄x− 1
2 γ

!∇U(x̄)
)

1
2

(
!̇̄xf − 1

γ
!∇U(xf )

)
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“Eyring” approximation:

Found using the 
DRP formula

Evaluated from 
the DRP formula

Eq. fluct. in the  
plane  

This is the only part of the calculation which does not follow 
from a systematic expansion in kBT. It should be improved

k ≡
∫

TS d!σ · !J " | !J(xTS)|×
∏d

i=1

[√
2π〈(yi − x̄i

TS)2〉
]

⊥ !vDRP (xTS)



DRP applications



Low-dimensional 
toy-models

Coarse-grained 
molecular models

Atomistic
molecular 

models
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FIG. 5: Left Panel: dominant reaction pathway for the diffusion in the landscape A, obtained from 10 different starting
trajectories at 300K (solid line) and 50K (dashed lines). Right Panel: dominant reaction pathways for the diffusion in the
landscape B obtained from 10 different trajectories at 50K (solid line) and 50K (dashed line).

to as A, the hump in the flat region was removed and the diffusion took place in a smooth symmetric funnel. In the
energy landscape B, a hump of 5kBT at T = 300K was placed between the native and denatured conformations. The
dominant reaction pathway for such a reaction have been found at different temperatures, T = 50K and T = 300K,
by minimizing the HJ action using 10 independent initial trajectories.

In the landscape A, the minimization algorithm always converged to the same dominant path, regardless of the
temperature of the heat-bath and on the trajectory used as starting point of the annealing Markov chain — see the
left panel of Fig. 5 —. Hence, for this transition, there is only one type of dominant path3.

In landscape B, the minimizations always converged to two different dominant reaction pathways: one passing on
the right and one passing on the left of the barrier as shown in the right panel of Fig. 5. Notice that the two dominant
paths tend to converge, as the temperature is increased. This is well understood since, in the asymptotically large
temperature limit, the structure of the landscape becomes irrelevant and the diffusion becomes purely Brownian.

The temperature of the heat bath does not only affect the structure of the dominant reaction pathways. Most
importantly, it governs the size of thermal fluctuations around the dominant pathways. The panels of Fig. 6 show the
ensemble of statistically relevant fluctuations around the two dominant paths, obtained from the Monte Carlo sampling

FIG. 6: Left Panel: Ensemble of statistical fluctuations around the dominant reaction pathways at T = 300K. Right Panel:
Ensemble of statistical fluctuations around the dominant reaction pathways at T = 50K.

3 In the present analysis, we are not concerned with multi-instanton paths which escape from and return to the bottom of the funnel,
several times.

Ab-initio models 
(quantum chemistry)

DRP 
applications 

& 
validations

 



Example 1: Protein folding

Coarse Graining

This simple model can be studied also with “traditional” MD 
simulations

Validation of DRP: 
Compare the results obtained by MD and by DRP



Predicting the structure of the 
folding trajectories
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PF, A. Lonardi and H.Orland,  “Dominant Reaction Pathways in Protein Folding: a Direct Validation Against MD Simulations “, JCP 
2010 in press
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Example 2: Alanine-dipeptide
Free energy landscape 
(from MD simulations) 
with superimposed two 
DRP trajectories. 

GROMOS96 was used.

M.Sega, PF, F.Pederiva, G Garberoglio and H.Orland, ”Quantitative Protein Dynamics from Dominant Folding Pathways”, 
Phys. Rev. Lett. 99 (2007), 118102

phi

psi



Example 2: Alanine-dipeptide
Free energy landscape 
(from MD simulations) 
with superimposed two 
DRP trajectories. 

GROMOS96 was used.

Predictions for the 
Transition State

M.Sega, PF, F.Pederiva, G Garberoglio and H.Orland, ”Quantitative Protein Dynamics from Dominant Folding Pathways”, 
Phys. Rev. Lett. 99 (2007), 118102

phi

psi



Example 3: cyclobuthene-
butadiene transition

Computational cost:
with Car-Parinello: impossible to simulate it!
with DRP: 64 CPU hours

S.a Beccara, G. Garberoglio, PF, F.Pederiva  “Ab-initio dynamics of rate thermally activated transitions”, JCP (comm.) 132 (2010), 11102. 



Example 3: cyclobuthene-
butadiene transition

Computational cost:
with Car-Parinello: impossible to simulate it!
with DRP: 64 CPU hours

S.a Beccara, G. Garberoglio, PF, F.Pederiva  “Ab-initio dynamics of rate thermally activated transitions”, JCP (comm.) 132 (2010), 11102. 



Temperature dependence of 
reaction mechanism

Secondary 

T=0T>0

Important: for conformational 
transitions (e.g. protein folding)
the T=0 limit is not appropriate



Folding pathways of an alpha-helix 
from quantum chemistry calculations

64

The molecular energy is not obtained from empiric force fields, but by 
directly solving the all-electron Schroedinger eq. 

Most probable trajectory of atomic nuclei and electron densities 
during the folding of an alpha helix:
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Does Classical MD make sense
in non-equilibrium conditions?

66
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Reaction Rates



Test 2: Entropic barrier

68



Test 2: Entropic barrier

68

P1(t)

P2(t)



Test 3: a toy cis-trans transition



P1(t)

P2(t)

P3(t)

Test 3: a toy cis-trans transition



70

Potential limitations to be faced:

 Difficulties in performing an efficient 
exploration of the path space 

 The dominant paths may not be 
representative of the real transition paths  
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Are the dominant paths informative?

The DRP approach  is useless if:
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Are the dominant paths informative?

The DRP approach  is useless if:
 large entropy of the reactant 

(“all routes to Rome” scenario) 

 The large number of DRP’s with 
same boundary conditions

 The large thermal fluctuations 
around a given DRP
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Test on the folding 
mechanism of 

MD and DRP trajectories have the same spread: 
the uncertainty on the folding mechanism is dominated by the large entropy of 
the reactant => SAME INFORMATION AS IN MD

PF, A. Lonardi and H.Orland,  “Dominant Reaction Pathways in Protein Folding: a Direct Validation Against MD Simulations “, JCP 133, 
045104 (2010)



Effective Stochastic Theories
i.e. “how to turn gaps into a virtue”
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Computational Limitations of the 
Molecular Dynamics Simulations
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We need alternative techniques to long-time dynamics:

Path integral-based techniques can be extremely useful



Internal time scales in 
macromolecular systems

Local 
structures 
formation

Introduction

Rotation 
dihedral 
angles

Protein 
folding



Stating the Goal:
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 Effective stochastic theory which generates the 
correct long-time stochastic dynamics, at a lower 
time-resolution power:



Averaging out the fast dynamics

77

Kim Atta: 
Long Exposure Photography Project



Conditional probabilities as  
path integrals
Consider the time-dependent conditional probability:

t-ti



Conditional probabilities as  
path integrals
Consider the time-dependent conditional probability:

t-ti
Seff [x] =

∫ t

0
dτ

(γ

4
ẋ2 + Veff (x)

)
.

P (x, t|xi, ti) = e−
β
2 (U(x)−U(xi))

∫ x(t)=x

x(ti)=xi

Dx e−β Seff [x],



Periodic path integral formulation
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For simplicity and without loss of generality consider:

Arbitrary correlation functions can be rigorously obtained from Z(t):

〈O1[X(τ1)] O2[X(τ2)]〉 =
H
DX O1[X(τ1)] O2[X(τ2)] e−Seff [X]

H
DX e−Seff [X] τ1, τ2 # t

Z(t) ≡
∫

dX P (X|X; t) =
∮

DX e−Seff [X].



The separation of time scales in 
stochastic molecular dynamics 

80

Fast local 
Brownian oscillations

Slow stochastic 
dynamics

Fourier Spectrum
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 Ω ∼ 2π

∆t

ω

X̃(τ) = X(τ + t) =
∑

n

X̃(ωn) eiωnt.

Perform Fourier analysis:

If the system displays separation of time
scales:



Slow and fast fields:
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Slow dynamics

Fourier Spectrum
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ω

X<(t) =
∑

|ωn|≤bΩ

X̃(ωn) e iωnt

X>(t) =
∑

bΩ≤|ωn|≤Ω

X̃(ωn) e iωnt.

X(t) = X<(t) + X<(t)

Slow dynamics

0<b<1:   



Key step: Analytically integrate out 
the fast fields from Z(t)

82

ω

Z(t) =
∮
DX<

∮
DX> e−Seff [X<+X>]

≡
∮
DX< e−Seff [X<] e−S>[X<] = ZEST (t)



Key step: Analytically integrate out 
the fast fields from Z(t)

82

The result is a low-energy effective theory, with new effective 
action which mocks the effect of the hard modes

The EST yields by construction the same long time dynamics

ω

Z(t) =
∮
DX<

∮
DX> e−Seff [X<+X>]

≡
∮
DX< e−Seff [X<] e−S>[X<] = ZEST (t)



Key step: Analytically integrate out 
the fast fields from Z(t)
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b Ω < ω < Ω
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Key step: Analytically integrate out 
the fast fields from Z(t)
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Key step: Analytically integrate out 
the fast fields from Z(t)
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Key step: Analytically integrate out 
the fast fields from Z(t)
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Key step: Analytically integrate out 
the fast fields from Z(t)
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b Ω < ω < Ω

The result is a low-energy effective theory, with new effective 
interactions which mock the effect of the hard modes
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e−βS>[x<] =
∫
Dx>

∑

k

1
k!

(−βSint)k e−β
R t
0 dτ γ

4 ẋ2
>

Performing the integral over the 
fast fields
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−β Sint[x> + x<] = −β

∫ t

0
dτ

∂Veff (x<(τ))
∂xi

x>(τ)− β
1
2

∫ t

0
dτ

∂2Veff (x<(τ))
∂xixj

xi
>(τ)xj

>(τ) + . . .

e−βS>[x<] =
∫
Dx>

∑

k

1
k!

(−βSint)k e−β
R t
0 dτ γ

4 ẋ2
>

Performing the integral over the 
fast fields
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dτ

∂2Veff (x<(τ))
∂xixj
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>(τ)xj
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∫
Dx>
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k

1
k!

(−βSint)k e−β
R t
0 dτ γ
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−β Sint[x> + x<] = −β

∫ t

0
dτ

∂Veff (x<(τ))
∂xi

x>(τ)− β
1
2

∫ t

0
dτ

∂2Veff (x<(τ))
∂xixj

xi
>(τ)xj

>(τ) + . . .

The Effective action is exactly represented as the sum of an infinite number of 
analytically calculable correlation functions in the free Brownian theory!

e−βS>[x<] =
∫
Dx>

∑

k

1
k!

(−βSint)k e−β
R t
0 dτ γ

4 ẋ2
>

Performing the integral over the 
fast fields



Feynmann diagram approach
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To compute these integrals we use field theory and define 

Z(t) =
∮
DX< e−Seff [X<]−sum of connected diagrams

= 〈X i
>(τ1)Xj

>(τ2)〉 =
∑

bΩ≤|ωn|≤Ω

δij
2

βγω2
n

eiωn (τ1−τ2)

τ1 τ2
Fast mode 
propagator:

VN = VN (τ) =
∂N Veff [X<(τ)]

∂X1 . . .∂XN
N-leg  
vertexes:

Then:



Examples of diagrams
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local in time
(instantaneous)

non-local 
in time

Two problems to face:
1. Non local effective actions (memory effects)
2. Infinitely many diagrams to compute
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Facing problem 1: local effective 
vertexes
In the limit of large separation of time scales, all non-local vertexes become 
local! Non-locality is replaced by time derivatives

NB: 

Effective locality is a common feature to all effective field theories:
E.g. multipole expansion

time derivative



Facing problem 2: 
Slow-mode perturbative expansion

KEY OBSERVATION:
Different contributions contain come with inverse powers of the UV 
cut-off scale:

∝
(

1−b
bΩ

)L
, (L = 0, 1, 2, 3)

To any desided accuracy one only needs to compute a 
finite number of diagrams (those with lowest L)!!!

How can we know what diagrams to compute?



Power counting scheme
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From topological arguments and dimensional analysis:

L(Feynman Diagram) = Nvertexes − 1 + Ntime derivatives +
Nspacial derivatives

2



Slow-mode Effective Actions:

 L=0:

 L=1:

 L=2:
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S>[x<] = 1
πγβ

1−b
bΩ

∫ t
0 dτ ∆Veff (x<(τ)).

S>[x<] =
1

πβγ

1− b

bΩ

∫ t

0
dτ ∆Veff (x<(τ))

+
1
2

(
1

πβγ

1− b

bΩ

)2 ∫ t

0
dτ ∆2Veff (x<(τ))

S>[x<] = 0 (doing nothing)

2

V R
eff (x<)

O.Corradini, PF, and H.Orland,  “Simulating stochastic dynamics using large time steps”, Phys. Rev. E 80, 061112 (2009)



Effective Langevin Equation

Can we find an effective memory-less
langevin Eq. which generates directly
the EST path integral?

Clearly such a theory could be 
simulated using large time steps



Ansatz
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Ẋ = −D(Xi)
kBT ∇U(Xi) + (1− α)∇D(Xi) +

√
2D(X) η(t),



Ansatz
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Ẋ = −D(Xi)
kBT ∇U(Xi) + (1− α)∇D(Xi) +

√
2D(X) η(t),

Multiplicative noise:
“Ito-strat. Dilemma”



Ansatz

92

Ẋ = −D(Xi)
kBT ∇U(Xi) + (1− α)∇D(Xi) +

√
2D(X) η(t),

Required to cure the Ito-Stratonovich ambiguity. 
α = 0

α = 1

(Ito)

(Strat.)
With such a term:

Multiplicative noise:
“Ito-strat. Dilemma”



Ansatz
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Ẋ = −D(Xi)
kBT ∇U(Xi) + (1− α)∇D(Xi) +

√
2D(X) η(t),

∂
∂tP (X, t) = ∇

[
D(X)

(
1

kBT ∇U(X) +∇
)

P (X, t)
]
.

P (x, t)→ 1
Z

exp
(
−U(x)

kBT

)

Required to cure the Ito-Stratonovich ambiguity. 
α = 0

α = 1

(Ito)

(Strat.)
With such a term:

Multiplicative noise:
“Ito-strat. Dilemma”



Working assumptions
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D(X) ≡ D0 + d(X)

d(X)
D0
! 1 ∇2d(X)

bΩ ! 1

Correction to D is small Correction to D evolves according 
to the slow dynamics

Ẋ = −D(Xi)
kBT ∇U(Xi) +∇D(Xi) +

√
2D(X) η(t),

α = 0



Matching ELE with EST

94

d(X)
D0
! 1 ∇2d(X)

bΩ ! 1Ẋ = −D(Xi)
kBT ∇U(Xi) +∇D(Xi) +

√
2D(X) η(t),

ZELE(t) !
∮
DX exp

[
−

∫ t
0 dτ Ẋ2

4D0
+ Veff (X) + d(X)Veff (X)

]
.

the averages are over ordinary LE paths



Matching ELE with EST

94

d(X)
D0
! 1 ∇2d(X)

bΩ ! 1Ẋ = −D(Xi)
kBT ∇U(Xi) +∇D(Xi) +

√
2D(X) η(t),

ZELE(t) !
∮
DX exp

[
−

∫ t
0 dτ Ẋ2

4D0
+ Veff (X) + d(X)Veff (X)

]
.

≡
ZEST (t) !

∮
DX exp

[
−

∫ t
0 dτ Ẋ2

4D0
+ Veff (X) + V R

eff (X)
]
.

the averages are over ordinary LE paths



Matching ELE with EST

94

d(X)
D0
! 1 ∇2d(X)

bΩ ! 1Ẋ = −D(Xi)
kBT ∇U(Xi) +∇D(Xi) +

√
2D(X) η(t),

ZELE(t) !
∮
DX exp

[
−

∫ t
0 dτ Ẋ2

4D0
+ Veff (X) + d(X)Veff (X)

]
.

≡
ZEST (t) !

∮
DX exp

[
−

∫ t
0 dτ Ẋ2

4D0
+ Veff (X) + V R

eff (X)
]
.

〈Veff (X(τ)) d(X(τ))〉 ≡ D0 〈V R
eff (X(τ))〉

the averages are over ordinary LE paths



The Effective Lagevin Eq. 
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〈 d(τ)) 〉 # D0
〈 V R

eff (X(τ)) 〉
〈 Veff (X(τ)) 〉 .

〈Veff (X(τ)) d(X(τ))〉 # 〈Veff (X(τ))〉 〈 d(X(τ))〉

PF,  “Molecular Dynamics at low time resolution” JCP 133, 164106 (2010)



The Effective Lagevin Eq. 
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〈 d(τ)) 〉 # D0
〈 V R

eff (X(τ)) 〉
〈 Veff (X(τ)) 〉 .

Xi+1 = Xi − ∆t (D0+〈d(i)〉)
kBT ∇U(Xi) +

√
2(D0 + 〈d(i)〉) ∆t ηi.

The fast dynamics can be averaged out and results in a
time-dependent rescaling of the time intevals

〈Veff (X(τ)) d(X(τ))〉 # 〈Veff (X(τ))〉 〈 d(X(τ))〉

PF,  “Molecular Dynamics at low time resolution” JCP 133, 164106 (2010)



The ELE algorithm
 generate paths using a large integration 

time step
 Use such paths to compute <d(t)>
 rescale time interval according to
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D0(ti+1 − ti) → (D0 + 〈d(i)〉) (ti+1 − ti),



Low-dimensional 
toy-models

Coarse-grained 
molecular models
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FIG. 5: Left Panel: dominant reaction pathway for the diffusion in the landscape A, obtained from 10 different starting
trajectories at 300K (solid line) and 50K (dashed lines). Right Panel: dominant reaction pathways for the diffusion in the
landscape B obtained from 10 different trajectories at 50K (solid line) and 50K (dashed line).

to as A, the hump in the flat region was removed and the diffusion took place in a smooth symmetric funnel. In the
energy landscape B, a hump of 5kBT at T = 300K was placed between the native and denatured conformations. The
dominant reaction pathway for such a reaction have been found at different temperatures, T = 50K and T = 300K,
by minimizing the HJ action using 10 independent initial trajectories.

In the landscape A, the minimization algorithm always converged to the same dominant path, regardless of the
temperature of the heat-bath and on the trajectory used as starting point of the annealing Markov chain — see the
left panel of Fig. 5 —. Hence, for this transition, there is only one type of dominant path3.

In landscape B, the minimizations always converged to two different dominant reaction pathways: one passing on
the right and one passing on the left of the barrier as shown in the right panel of Fig. 5. Notice that the two dominant
paths tend to converge, as the temperature is increased. This is well understood since, in the asymptotically large
temperature limit, the structure of the landscape becomes irrelevant and the diffusion becomes purely Brownian.

The temperature of the heat bath does not only affect the structure of the dominant reaction pathways. Most
importantly, it governs the size of thermal fluctuations around the dominant pathways. The panels of Fig. 6 show the
ensemble of statistically relevant fluctuations around the two dominant paths, obtained from the Monte Carlo sampling

FIG. 6: Left Panel: Ensemble of statistical fluctuations around the dominant reaction pathways at T = 300K. Right Panel:
Ensemble of statistical fluctuations around the dominant reaction pathways at T = 50K.

3 In the present analysis, we are not concerned with multi-instanton paths which escape from and return to the bottom of the funnel,
several times.

Application

ELE 
applications 

& 
validations

 



 1-D toy model
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Long time dynamics
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Short-time dynamics (breakdown)
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Thermal unfolding of an
amino-acid chain
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PF,  “Molecular Dynamics at low time resolution” JCP 133, 164106 (2010)



Conclusions
� Stochastic dynamics can be used to investigate the 

equilibrium and non-equilibrium dynamics of 
biomolecules

� The gap in time scales makes the direct integration 
of the Langevin Eq. inefficient

� Path integral approaches become useful to 
� study rare transitions (DRP)
� integrate out fast modes (EST)
� ....
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Thank you for your attention!


